Properties

Label 2160.2.f.n.1729.4
Level $2160$
Weight $2$
Character 2160.1729
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(1729,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1729");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1729.4
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1729
Dual form 2160.2.f.n.1729.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.22474 + 0.224745i) q^{5} -1.00000i q^{7} +O(q^{10})\) \(q+(2.22474 + 0.224745i) q^{5} -1.00000i q^{7} -0.449490 q^{11} -3.89898i q^{13} -4.89898i q^{17} -5.89898 q^{19} -4.44949i q^{23} +(4.89898 + 1.00000i) q^{25} -0.449490 q^{29} -6.00000 q^{31} +(0.224745 - 2.22474i) q^{35} +0.101021i q^{37} -9.34847 q^{41} -6.00000i q^{43} -4.89898i q^{47} +6.00000 q^{49} -4.44949i q^{53} +(-1.00000 - 0.101021i) q^{55} -4.89898 q^{59} +8.79796 q^{61} +(0.876276 - 8.67423i) q^{65} +14.7980i q^{67} +11.5505 q^{71} +3.89898i q^{73} +0.449490i q^{77} -3.89898 q^{79} -7.55051i q^{83} +(1.10102 - 10.8990i) q^{85} +12.0000 q^{89} -3.89898 q^{91} +(-13.1237 - 1.32577i) q^{95} +15.8990i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{5} + 8 q^{11} - 4 q^{19} + 8 q^{29} - 24 q^{31} - 4 q^{35} - 8 q^{41} + 24 q^{49} - 4 q^{55} - 4 q^{61} + 28 q^{65} + 56 q^{71} + 4 q^{79} + 24 q^{85} + 48 q^{89} + 4 q^{91} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.22474 + 0.224745i 0.994936 + 0.100509i
\(6\) 0 0
\(7\) 1.00000i 0.377964i −0.981981 0.188982i \(-0.939481\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.449490 −0.135526 −0.0677631 0.997701i \(-0.521586\pi\)
−0.0677631 + 0.997701i \(0.521586\pi\)
\(12\) 0 0
\(13\) 3.89898i 1.08138i −0.841221 0.540691i \(-0.818163\pi\)
0.841221 0.540691i \(-0.181837\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) −5.89898 −1.35332 −0.676659 0.736296i \(-0.736573\pi\)
−0.676659 + 0.736296i \(0.736573\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.44949i 0.927783i −0.885892 0.463891i \(-0.846453\pi\)
0.885892 0.463891i \(-0.153547\pi\)
\(24\) 0 0
\(25\) 4.89898 + 1.00000i 0.979796 + 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.449490 −0.0834681 −0.0417341 0.999129i \(-0.513288\pi\)
−0.0417341 + 0.999129i \(0.513288\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.224745 2.22474i 0.0379888 0.376051i
\(36\) 0 0
\(37\) 0.101021i 0.0166077i 0.999966 + 0.00830384i \(0.00264322\pi\)
−0.999966 + 0.00830384i \(0.997357\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.34847 −1.45999 −0.729993 0.683455i \(-0.760477\pi\)
−0.729993 + 0.683455i \(0.760477\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i −0.889212 0.457496i \(-0.848747\pi\)
0.889212 0.457496i \(-0.151253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.89898i 0.714590i −0.933992 0.357295i \(-0.883699\pi\)
0.933992 0.357295i \(-0.116301\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.44949i 0.611184i −0.952162 0.305592i \(-0.901146\pi\)
0.952162 0.305592i \(-0.0988544\pi\)
\(54\) 0 0
\(55\) −1.00000 0.101021i −0.134840 0.0136216i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.89898 −0.637793 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(60\) 0 0
\(61\) 8.79796 1.12646 0.563232 0.826299i \(-0.309558\pi\)
0.563232 + 0.826299i \(0.309558\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.876276 8.67423i 0.108689 1.07591i
\(66\) 0 0
\(67\) 14.7980i 1.80786i 0.427682 + 0.903929i \(0.359330\pi\)
−0.427682 + 0.903929i \(0.640670\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.5505 1.37079 0.685397 0.728170i \(-0.259629\pi\)
0.685397 + 0.728170i \(0.259629\pi\)
\(72\) 0 0
\(73\) 3.89898i 0.456341i 0.973621 + 0.228171i \(0.0732744\pi\)
−0.973621 + 0.228171i \(0.926726\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.449490i 0.0512241i
\(78\) 0 0
\(79\) −3.89898 −0.438669 −0.219335 0.975650i \(-0.570389\pi\)
−0.219335 + 0.975650i \(0.570389\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.55051i 0.828776i −0.910100 0.414388i \(-0.863996\pi\)
0.910100 0.414388i \(-0.136004\pi\)
\(84\) 0 0
\(85\) 1.10102 10.8990i 0.119422 1.18216i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) −3.89898 −0.408724
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −13.1237 1.32577i −1.34647 0.136021i
\(96\) 0 0
\(97\) 15.8990i 1.61430i 0.590349 + 0.807148i \(0.298990\pi\)
−0.590349 + 0.807148i \(0.701010\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.10102 −0.706578 −0.353289 0.935514i \(-0.614937\pi\)
−0.353289 + 0.935514i \(0.614937\pi\)
\(102\) 0 0
\(103\) 10.7980i 1.06395i 0.846759 + 0.531977i \(0.178551\pi\)
−0.846759 + 0.531977i \(0.821449\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.2474i 1.37735i −0.725069 0.688676i \(-0.758192\pi\)
0.725069 0.688676i \(-0.241808\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 17.3485i 1.63201i −0.578047 0.816003i \(-0.696185\pi\)
0.578047 0.816003i \(-0.303815\pi\)
\(114\) 0 0
\(115\) 1.00000 9.89898i 0.0932505 0.923085i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.89898 −0.449089
\(120\) 0 0
\(121\) −10.7980 −0.981633
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.6742 + 3.32577i 0.954733 + 0.297465i
\(126\) 0 0
\(127\) 3.79796i 0.337014i −0.985700 0.168507i \(-0.946105\pi\)
0.985700 0.168507i \(-0.0538946\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.10102 0.620419 0.310210 0.950668i \(-0.399601\pi\)
0.310210 + 0.950668i \(0.399601\pi\)
\(132\) 0 0
\(133\) 5.89898i 0.511506i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.3485i 1.48218i −0.671406 0.741090i \(-0.734309\pi\)
0.671406 0.741090i \(-0.265691\pi\)
\(138\) 0 0
\(139\) 9.69694 0.822484 0.411242 0.911526i \(-0.365095\pi\)
0.411242 + 0.911526i \(0.365095\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.75255i 0.146556i
\(144\) 0 0
\(145\) −1.00000 0.101021i −0.0830455 0.00838930i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.79796 −0.802680 −0.401340 0.915929i \(-0.631455\pi\)
−0.401340 + 0.915929i \(0.631455\pi\)
\(150\) 0 0
\(151\) 6.10102 0.496494 0.248247 0.968697i \(-0.420146\pi\)
0.248247 + 0.968697i \(0.420146\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13.3485 1.34847i −1.07217 0.108312i
\(156\) 0 0
\(157\) 2.00000i 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.44949 −0.350669
\(162\) 0 0
\(163\) 1.00000i 0.0783260i 0.999233 + 0.0391630i \(0.0124692\pi\)
−0.999233 + 0.0391630i \(0.987531\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.20204i 0.170399i −0.996364 0.0851995i \(-0.972847\pi\)
0.996364 0.0851995i \(-0.0271528\pi\)
\(168\) 0 0
\(169\) −2.20204 −0.169388
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.8990i 1.28481i 0.766367 + 0.642403i \(0.222062\pi\)
−0.766367 + 0.642403i \(0.777938\pi\)
\(174\) 0 0
\(175\) 1.00000 4.89898i 0.0755929 0.370328i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.34847 0.399763 0.199882 0.979820i \(-0.435944\pi\)
0.199882 + 0.979820i \(0.435944\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0227038 + 0.224745i −0.00166922 + 0.0165236i
\(186\) 0 0
\(187\) 2.20204i 0.161029i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.7980 1.57724 0.788622 0.614878i \(-0.210795\pi\)
0.788622 + 0.614878i \(0.210795\pi\)
\(192\) 0 0
\(193\) 23.8990i 1.72029i −0.510053 0.860143i \(-0.670374\pi\)
0.510053 0.860143i \(-0.329626\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) 21.6969 1.53806 0.769028 0.639216i \(-0.220741\pi\)
0.769028 + 0.639216i \(0.220741\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.449490i 0.0315480i
\(204\) 0 0
\(205\) −20.7980 2.10102i −1.45259 0.146742i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.65153 0.183410
\(210\) 0 0
\(211\) 7.69694 0.529879 0.264940 0.964265i \(-0.414648\pi\)
0.264940 + 0.964265i \(0.414648\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.34847 13.3485i 0.0919648 0.910358i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −19.1010 −1.28487
\(222\) 0 0
\(223\) 25.5959i 1.71403i −0.515292 0.857015i \(-0.672316\pi\)
0.515292 0.857015i \(-0.327684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.1464i 1.27079i 0.772186 + 0.635397i \(0.219163\pi\)
−0.772186 + 0.635397i \(0.780837\pi\)
\(228\) 0 0
\(229\) −9.79796 −0.647467 −0.323734 0.946148i \(-0.604938\pi\)
−0.323734 + 0.946148i \(0.604938\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.6969i 1.74897i −0.485048 0.874487i \(-0.661198\pi\)
0.485048 0.874487i \(-0.338802\pi\)
\(234\) 0 0
\(235\) 1.10102 10.8990i 0.0718227 0.710971i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.3485 −1.38092 −0.690459 0.723372i \(-0.742591\pi\)
−0.690459 + 0.723372i \(0.742591\pi\)
\(240\) 0 0
\(241\) −14.5959 −0.940206 −0.470103 0.882612i \(-0.655783\pi\)
−0.470103 + 0.882612i \(0.655783\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 13.3485 + 1.34847i 0.852802 + 0.0861505i
\(246\) 0 0
\(247\) 23.0000i 1.46345i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 29.3485 1.85246 0.926229 0.376960i \(-0.123031\pi\)
0.926229 + 0.376960i \(0.123031\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.10102i 0.442949i −0.975166 0.221475i \(-0.928913\pi\)
0.975166 0.221475i \(-0.0710870\pi\)
\(258\) 0 0
\(259\) 0.101021 0.00627711
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.8990i 1.04204i −0.853546 0.521018i \(-0.825552\pi\)
0.853546 0.521018i \(-0.174448\pi\)
\(264\) 0 0
\(265\) 1.00000 9.89898i 0.0614295 0.608089i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.4949 1.49348 0.746740 0.665116i \(-0.231618\pi\)
0.746740 + 0.665116i \(0.231618\pi\)
\(270\) 0 0
\(271\) 15.6969 0.953521 0.476761 0.879033i \(-0.341811\pi\)
0.476761 + 0.879033i \(0.341811\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.20204 0.449490i −0.132788 0.0271053i
\(276\) 0 0
\(277\) 21.7980i 1.30971i 0.755753 + 0.654856i \(0.227271\pi\)
−0.755753 + 0.654856i \(0.772729\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.6969 −1.59261 −0.796303 0.604898i \(-0.793214\pi\)
−0.796303 + 0.604898i \(0.793214\pi\)
\(282\) 0 0
\(283\) 13.5959i 0.808193i −0.914716 0.404097i \(-0.867586\pi\)
0.914716 0.404097i \(-0.132414\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.34847i 0.551823i
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.9444i 1.69095i 0.534016 + 0.845475i \(0.320682\pi\)
−0.534016 + 0.845475i \(0.679318\pi\)
\(294\) 0 0
\(295\) −10.8990 1.10102i −0.634563 0.0641039i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.3485 −1.00329
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 19.5732 + 1.97730i 1.12076 + 0.113220i
\(306\) 0 0
\(307\) 16.0000i 0.913168i 0.889680 + 0.456584i \(0.150927\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.4949 −1.38898 −0.694489 0.719503i \(-0.744370\pi\)
−0.694489 + 0.719503i \(0.744370\pi\)
\(312\) 0 0
\(313\) 14.1010i 0.797037i −0.917160 0.398518i \(-0.869525\pi\)
0.917160 0.398518i \(-0.130475\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.5959i 1.10062i 0.834962 + 0.550308i \(0.185490\pi\)
−0.834962 + 0.550308i \(0.814510\pi\)
\(318\) 0 0
\(319\) 0.202041 0.0113121
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 28.8990i 1.60798i
\(324\) 0 0
\(325\) 3.89898 19.1010i 0.216276 1.05953i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.89898 −0.270089
\(330\) 0 0
\(331\) 12.1010 0.665132 0.332566 0.943080i \(-0.392086\pi\)
0.332566 + 0.943080i \(0.392086\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.32577 + 32.9217i −0.181706 + 1.79870i
\(336\) 0 0
\(337\) 20.1010i 1.09497i 0.836815 + 0.547486i \(0.184415\pi\)
−0.836815 + 0.547486i \(0.815585\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.69694 0.146047
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.2474i 0.550112i −0.961428 0.275056i \(-0.911304\pi\)
0.961428 0.275056i \(-0.0886964\pi\)
\(348\) 0 0
\(349\) −8.79796 −0.470944 −0.235472 0.971881i \(-0.575664\pi\)
−0.235472 + 0.971881i \(0.575664\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.2020i 0.755898i 0.925826 + 0.377949i \(0.123371\pi\)
−0.925826 + 0.377949i \(0.876629\pi\)
\(354\) 0 0
\(355\) 25.6969 + 2.59592i 1.36385 + 0.137777i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.1464 1.01051 0.505255 0.862970i \(-0.331398\pi\)
0.505255 + 0.862970i \(0.331398\pi\)
\(360\) 0 0
\(361\) 15.7980 0.831472
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.876276 + 8.67423i −0.0458664 + 0.454030i
\(366\) 0 0
\(367\) 22.7980i 1.19004i 0.803709 + 0.595022i \(0.202857\pi\)
−0.803709 + 0.595022i \(0.797143\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.44949 −0.231006
\(372\) 0 0
\(373\) 21.6969i 1.12342i 0.827333 + 0.561712i \(0.189857\pi\)
−0.827333 + 0.561712i \(0.810143\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.75255i 0.0902610i
\(378\) 0 0
\(379\) −17.8990 −0.919409 −0.459704 0.888072i \(-0.652045\pi\)
−0.459704 + 0.888072i \(0.652045\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.3939i 1.50196i 0.660327 + 0.750978i \(0.270418\pi\)
−0.660327 + 0.750978i \(0.729582\pi\)
\(384\) 0 0
\(385\) −0.101021 + 1.00000i −0.00514848 + 0.0509647i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.59592 0.385128 0.192564 0.981284i \(-0.438320\pi\)
0.192564 + 0.981284i \(0.438320\pi\)
\(390\) 0 0
\(391\) −21.7980 −1.10237
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.67423 0.876276i −0.436448 0.0440902i
\(396\) 0 0
\(397\) 31.5959i 1.58575i 0.609382 + 0.792877i \(0.291418\pi\)
−0.609382 + 0.792877i \(0.708582\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.3485 −0.866341 −0.433171 0.901312i \(-0.642605\pi\)
−0.433171 + 0.901312i \(0.642605\pi\)
\(402\) 0 0
\(403\) 23.3939i 1.16533i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.0454077i 0.00225078i
\(408\) 0 0
\(409\) −2.79796 −0.138350 −0.0691751 0.997605i \(-0.522037\pi\)
−0.0691751 + 0.997605i \(0.522037\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.89898i 0.241063i
\(414\) 0 0
\(415\) 1.69694 16.7980i 0.0832994 0.824579i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.59592 0.371085 0.185542 0.982636i \(-0.440596\pi\)
0.185542 + 0.982636i \(0.440596\pi\)
\(420\) 0 0
\(421\) 28.7980 1.40353 0.701763 0.712410i \(-0.252396\pi\)
0.701763 + 0.712410i \(0.252396\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.89898 24.0000i 0.237635 1.16417i
\(426\) 0 0
\(427\) 8.79796i 0.425763i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.0454 0.965553 0.482777 0.875744i \(-0.339628\pi\)
0.482777 + 0.875744i \(0.339628\pi\)
\(432\) 0 0
\(433\) 31.5959i 1.51840i −0.650856 0.759201i \(-0.725590\pi\)
0.650856 0.759201i \(-0.274410\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.2474i 1.25559i
\(438\) 0 0
\(439\) −8.20204 −0.391462 −0.195731 0.980658i \(-0.562708\pi\)
−0.195731 + 0.980658i \(0.562708\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.1010i 1.47765i −0.673895 0.738827i \(-0.735380\pi\)
0.673895 0.738827i \(-0.264620\pi\)
\(444\) 0 0
\(445\) 26.6969 + 2.69694i 1.26556 + 0.127847i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.59592 −0.358474 −0.179237 0.983806i \(-0.557363\pi\)
−0.179237 + 0.983806i \(0.557363\pi\)
\(450\) 0 0
\(451\) 4.20204 0.197866
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.67423 0.876276i −0.406654 0.0410804i
\(456\) 0 0
\(457\) 7.59592i 0.355322i −0.984092 0.177661i \(-0.943147\pi\)
0.984092 0.177661i \(-0.0568531\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.20204 −0.102559 −0.0512796 0.998684i \(-0.516330\pi\)
−0.0512796 + 0.998684i \(0.516330\pi\)
\(462\) 0 0
\(463\) 6.59592i 0.306538i 0.988184 + 0.153269i \(0.0489801\pi\)
−0.988184 + 0.153269i \(0.951020\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 14.7980 0.683306
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.69694i 0.124005i
\(474\) 0 0
\(475\) −28.8990 5.89898i −1.32598 0.270664i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.9444 1.13974 0.569869 0.821736i \(-0.306994\pi\)
0.569869 + 0.821736i \(0.306994\pi\)
\(480\) 0 0
\(481\) 0.393877 0.0179592
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.57321 + 35.3712i −0.162251 + 1.60612i
\(486\) 0 0
\(487\) 40.3939i 1.83042i 0.402976 + 0.915211i \(0.367976\pi\)
−0.402976 + 0.915211i \(0.632024\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.9444 1.30624 0.653121 0.757254i \(-0.273459\pi\)
0.653121 + 0.757254i \(0.273459\pi\)
\(492\) 0 0
\(493\) 2.20204i 0.0991749i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.5505i 0.518111i
\(498\) 0 0
\(499\) −21.3939 −0.957721 −0.478861 0.877891i \(-0.658950\pi\)
−0.478861 + 0.877891i \(0.658950\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.6515i 0.831631i 0.909449 + 0.415815i \(0.136504\pi\)
−0.909449 + 0.415815i \(0.863496\pi\)
\(504\) 0 0
\(505\) −15.7980 1.59592i −0.703000 0.0710174i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.1464 0.671354 0.335677 0.941977i \(-0.391035\pi\)
0.335677 + 0.941977i \(0.391035\pi\)
\(510\) 0 0
\(511\) 3.89898 0.172481
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.42679 + 24.0227i −0.106937 + 1.05857i
\(516\) 0 0
\(517\) 2.20204i 0.0968457i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.0454 1.05345 0.526724 0.850036i \(-0.323420\pi\)
0.526724 + 0.850036i \(0.323420\pi\)
\(522\) 0 0
\(523\) 2.79796i 0.122346i 0.998127 + 0.0611731i \(0.0194842\pi\)
−0.998127 + 0.0611731i \(0.980516\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.3939i 1.28042i
\(528\) 0 0
\(529\) 3.20204 0.139219
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 36.4495i 1.57880i
\(534\) 0 0
\(535\) 3.20204 31.6969i 0.138436 1.37038i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.69694 −0.116165
\(540\) 0 0
\(541\) −0.595918 −0.0256205 −0.0128103 0.999918i \(-0.504078\pi\)
−0.0128103 + 0.999918i \(0.504078\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.0000i 0.470326i 0.971956 + 0.235163i \(0.0755624\pi\)
−0.971956 + 0.235163i \(0.924438\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.65153 0.112959
\(552\) 0 0
\(553\) 3.89898i 0.165801i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.8990i 1.22449i 0.790668 + 0.612245i \(0.209733\pi\)
−0.790668 + 0.612245i \(0.790267\pi\)
\(558\) 0 0
\(559\) −23.3939 −0.989456
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 3.89898 38.5959i 0.164031 1.62374i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.89898 −0.205376 −0.102688 0.994714i \(-0.532744\pi\)
−0.102688 + 0.994714i \(0.532744\pi\)
\(570\) 0 0
\(571\) −39.6969 −1.66127 −0.830633 0.556821i \(-0.812021\pi\)
−0.830633 + 0.556821i \(0.812021\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.44949 21.7980i 0.185557 0.909038i
\(576\) 0 0
\(577\) 14.1010i 0.587033i 0.955954 + 0.293517i \(0.0948256\pi\)
−0.955954 + 0.293517i \(0.905174\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.55051 −0.313248
\(582\) 0 0
\(583\) 2.00000i 0.0828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.9444i 1.02957i 0.857321 + 0.514783i \(0.172127\pi\)
−0.857321 + 0.514783i \(0.827873\pi\)
\(588\) 0 0
\(589\) 35.3939 1.45838
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.6515i 0.765927i −0.923764 0.382963i \(-0.874904\pi\)
0.923764 0.382963i \(-0.125096\pi\)
\(594\) 0 0
\(595\) −10.8990 1.10102i −0.446815 0.0451374i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −41.8434 −1.70967 −0.854837 0.518897i \(-0.826343\pi\)
−0.854837 + 0.518897i \(0.826343\pi\)
\(600\) 0 0
\(601\) 43.5959 1.77831 0.889157 0.457602i \(-0.151291\pi\)
0.889157 + 0.457602i \(0.151291\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −24.0227 2.42679i −0.976662 0.0986629i
\(606\) 0 0
\(607\) 30.5959i 1.24185i −0.783870 0.620925i \(-0.786757\pi\)
0.783870 0.620925i \(-0.213243\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −19.1010 −0.772745
\(612\) 0 0
\(613\) 23.8990i 0.965271i 0.875821 + 0.482635i \(0.160320\pi\)
−0.875821 + 0.482635i \(0.839680\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0454i 0.484930i −0.970160 0.242465i \(-0.922044\pi\)
0.970160 0.242465i \(-0.0779559\pi\)
\(618\) 0 0
\(619\) 13.4949 0.542406 0.271203 0.962522i \(-0.412579\pi\)
0.271203 + 0.962522i \(0.412579\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 23.0000 + 9.79796i 0.920000 + 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.494897 0.0197329
\(630\) 0 0
\(631\) −25.6969 −1.02298 −0.511489 0.859290i \(-0.670906\pi\)
−0.511489 + 0.859290i \(0.670906\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.853572 8.44949i 0.0338730 0.335308i
\(636\) 0 0
\(637\) 23.3939i 0.926899i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.7980 1.33494 0.667470 0.744637i \(-0.267377\pi\)
0.667470 + 0.744637i \(0.267377\pi\)
\(642\) 0 0
\(643\) 39.7980i 1.56948i −0.619826 0.784739i \(-0.712797\pi\)
0.619826 0.784739i \(-0.287203\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.2474i 1.03189i −0.856621 0.515947i \(-0.827440\pi\)
0.856621 0.515947i \(-0.172560\pi\)
\(648\) 0 0
\(649\) 2.20204 0.0864377
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.79796i 0.383424i −0.981451 0.191712i \(-0.938596\pi\)
0.981451 0.191712i \(-0.0614039\pi\)
\(654\) 0 0
\(655\) 15.7980 + 1.59592i 0.617277 + 0.0623577i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.7980 −1.31658 −0.658291 0.752764i \(-0.728720\pi\)
−0.658291 + 0.752764i \(0.728720\pi\)
\(660\) 0 0
\(661\) −46.7980 −1.82023 −0.910115 0.414356i \(-0.864007\pi\)
−0.910115 + 0.414356i \(0.864007\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.32577 + 13.1237i −0.0514110 + 0.508916i
\(666\) 0 0
\(667\) 2.00000i 0.0774403i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.95459 −0.152665
\(672\) 0 0
\(673\) 45.6969i 1.76149i −0.473593 0.880744i \(-0.657043\pi\)
0.473593 0.880744i \(-0.342957\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.6969i 0.564849i −0.959289 0.282425i \(-0.908861\pi\)
0.959289 0.282425i \(-0.0911387\pi\)
\(678\) 0 0
\(679\) 15.8990 0.610147
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.6515i 0.560625i 0.959909 + 0.280313i \(0.0904381\pi\)
−0.959909 + 0.280313i \(0.909562\pi\)
\(684\) 0 0
\(685\) 3.89898 38.5959i 0.148972 1.47467i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.3485 −0.660924
\(690\) 0 0
\(691\) 13.5959 0.517213 0.258607 0.965983i \(-0.416737\pi\)
0.258607 + 0.965983i \(0.416737\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.5732 + 2.17934i 0.818319 + 0.0826670i
\(696\) 0 0
\(697\) 45.7980i 1.73472i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.44949 0.168055 0.0840275 0.996463i \(-0.473222\pi\)
0.0840275 + 0.996463i \(0.473222\pi\)
\(702\) 0 0
\(703\) 0.595918i 0.0224755i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.10102i 0.267061i
\(708\) 0 0
\(709\) 0.595918 0.0223802 0.0111901 0.999937i \(-0.496438\pi\)
0.0111901 + 0.999937i \(0.496438\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 26.6969i 0.999808i
\(714\) 0 0
\(715\) −0.393877 + 3.89898i −0.0147302 + 0.145814i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.44949 0.165938 0.0829690 0.996552i \(-0.473560\pi\)
0.0829690 + 0.996552i \(0.473560\pi\)
\(720\) 0 0
\(721\) 10.7980 0.402137
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.20204 0.449490i −0.0817818 0.0166936i
\(726\) 0 0
\(727\) 39.7980i 1.47602i 0.674787 + 0.738012i \(0.264235\pi\)
−0.674787 + 0.738012i \(0.735765\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −29.3939 −1.08717
\(732\) 0 0
\(733\) 14.2020i 0.524564i 0.964991 + 0.262282i \(0.0844751\pi\)
−0.964991 + 0.262282i \(0.915525\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.65153i 0.245012i
\(738\) 0 0
\(739\) 1.59592 0.0587068 0.0293534 0.999569i \(-0.490655\pi\)
0.0293534 + 0.999569i \(0.490655\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.1010i 0.700748i −0.936610 0.350374i \(-0.886054\pi\)
0.936610 0.350374i \(-0.113946\pi\)
\(744\) 0 0
\(745\) −21.7980 2.20204i −0.798615 0.0806765i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −14.2474 −0.520590
\(750\) 0 0
\(751\) −15.8990 −0.580162 −0.290081 0.957002i \(-0.593682\pi\)
−0.290081 + 0.957002i \(0.593682\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.5732 + 1.37117i 0.493980 + 0.0499021i
\(756\) 0 0
\(757\) 15.6969i 0.570515i −0.958451 0.285257i \(-0.907921\pi\)
0.958451 0.285257i \(-0.0920791\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.6515 0.676117 0.338059 0.941125i \(-0.390230\pi\)
0.338059 + 0.941125i \(0.390230\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.1010i 0.689698i
\(768\) 0 0
\(769\) 16.3939 0.591178 0.295589 0.955315i \(-0.404484\pi\)
0.295589 + 0.955315i \(0.404484\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.6515i 0.958589i −0.877654 0.479294i \(-0.840893\pi\)
0.877654 0.479294i \(-0.159107\pi\)
\(774\) 0 0
\(775\) −29.3939 6.00000i −1.05586 0.215526i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 55.1464 1.97583
\(780\) 0 0
\(781\) −5.19184 −0.185778
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.449490 4.44949i 0.0160430 0.158809i
\(786\) 0 0
\(787\) 21.2020i 0.755771i 0.925852 + 0.377886i \(0.123349\pi\)
−0.925852 + 0.377886i \(0.876651\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17.3485 −0.616841
\(792\) 0 0
\(793\) 34.3031i 1.21814i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.4949i 0.442592i 0.975207 + 0.221296i \(0.0710287\pi\)
−0.975207 + 0.221296i \(0.928971\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0