Properties

Label 2160.2.f.n.1729.2
Level $2160$
Weight $2$
Character 2160.1729
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(1729,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1729");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1729.2
Root \(1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1729
Dual form 2160.2.f.n.1729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.224745 + 2.22474i) q^{5} +1.00000i q^{7} +O(q^{10})\) \(q+(-0.224745 + 2.22474i) q^{5} +1.00000i q^{7} +4.44949 q^{11} -5.89898i q^{13} -4.89898i q^{17} +3.89898 q^{19} -0.449490i q^{23} +(-4.89898 - 1.00000i) q^{25} +4.44949 q^{29} -6.00000 q^{31} +(-2.22474 - 0.224745i) q^{35} -9.89898i q^{37} +5.34847 q^{41} +6.00000i q^{43} -4.89898i q^{47} +6.00000 q^{49} -0.449490i q^{53} +(-1.00000 + 9.89898i) q^{55} +4.89898 q^{59} -10.7980 q^{61} +(13.1237 + 1.32577i) q^{65} +4.79796i q^{67} +16.4495 q^{71} +5.89898i q^{73} +4.44949i q^{77} +5.89898 q^{79} +12.4495i q^{83} +(10.8990 + 1.10102i) q^{85} +12.0000 q^{89} +5.89898 q^{91} +(-0.876276 + 8.67423i) q^{95} -6.10102i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{5} + 8 q^{11} - 4 q^{19} + 8 q^{29} - 24 q^{31} - 4 q^{35} - 8 q^{41} + 24 q^{49} - 4 q^{55} - 4 q^{61} + 28 q^{65} + 56 q^{71} + 4 q^{79} + 24 q^{85} + 48 q^{89} + 4 q^{91} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.224745 + 2.22474i −0.100509 + 0.994936i
\(6\) 0 0
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.44949 1.34157 0.670786 0.741651i \(-0.265957\pi\)
0.670786 + 0.741651i \(0.265957\pi\)
\(12\) 0 0
\(13\) 5.89898i 1.63608i −0.575160 0.818041i \(-0.695060\pi\)
0.575160 0.818041i \(-0.304940\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.89898i 1.18818i −0.804400 0.594089i \(-0.797513\pi\)
0.804400 0.594089i \(-0.202487\pi\)
\(18\) 0 0
\(19\) 3.89898 0.894487 0.447244 0.894412i \(-0.352406\pi\)
0.447244 + 0.894412i \(0.352406\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.449490i 0.0937251i −0.998901 0.0468625i \(-0.985078\pi\)
0.998901 0.0468625i \(-0.0149223\pi\)
\(24\) 0 0
\(25\) −4.89898 1.00000i −0.979796 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.44949 0.826250 0.413125 0.910674i \(-0.364437\pi\)
0.413125 + 0.910674i \(0.364437\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.22474 0.224745i −0.376051 0.0379888i
\(36\) 0 0
\(37\) 9.89898i 1.62738i −0.581298 0.813691i \(-0.697455\pi\)
0.581298 0.813691i \(-0.302545\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.34847 0.835291 0.417645 0.908610i \(-0.362855\pi\)
0.417645 + 0.908610i \(0.362855\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.89898i 0.714590i −0.933992 0.357295i \(-0.883699\pi\)
0.933992 0.357295i \(-0.116301\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.449490i 0.0617422i −0.999523 0.0308711i \(-0.990172\pi\)
0.999523 0.0308711i \(-0.00982813\pi\)
\(54\) 0 0
\(55\) −1.00000 + 9.89898i −0.134840 + 1.33478i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.89898 0.637793 0.318896 0.947790i \(-0.396688\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(60\) 0 0
\(61\) −10.7980 −1.38254 −0.691268 0.722598i \(-0.742948\pi\)
−0.691268 + 0.722598i \(0.742948\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.1237 + 1.32577i 1.62780 + 0.164441i
\(66\) 0 0
\(67\) 4.79796i 0.586164i 0.956087 + 0.293082i \(0.0946809\pi\)
−0.956087 + 0.293082i \(0.905319\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.4495 1.95220 0.976098 0.217332i \(-0.0697356\pi\)
0.976098 + 0.217332i \(0.0697356\pi\)
\(72\) 0 0
\(73\) 5.89898i 0.690423i 0.938525 + 0.345212i \(0.112193\pi\)
−0.938525 + 0.345212i \(0.887807\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.44949i 0.507066i
\(78\) 0 0
\(79\) 5.89898 0.663687 0.331844 0.943334i \(-0.392329\pi\)
0.331844 + 0.943334i \(0.392329\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.4495i 1.36651i 0.730180 + 0.683255i \(0.239436\pi\)
−0.730180 + 0.683255i \(0.760564\pi\)
\(84\) 0 0
\(85\) 10.8990 + 1.10102i 1.18216 + 0.119422i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 5.89898 0.618381
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.876276 + 8.67423i −0.0899040 + 0.889958i
\(96\) 0 0
\(97\) 6.10102i 0.619465i −0.950824 0.309732i \(-0.899761\pi\)
0.950824 0.309732i \(-0.100239\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.8990 −1.68151 −0.840756 0.541415i \(-0.817889\pi\)
−0.840756 + 0.541415i \(0.817889\pi\)
\(102\) 0 0
\(103\) 8.79796i 0.866889i 0.901180 + 0.433444i \(0.142702\pi\)
−0.901180 + 0.433444i \(0.857298\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.2474i 0.990658i −0.868705 0.495329i \(-0.835047\pi\)
0.868705 0.495329i \(-0.164953\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.65153i 0.249435i 0.992192 + 0.124718i \(0.0398025\pi\)
−0.992192 + 0.124718i \(0.960198\pi\)
\(114\) 0 0
\(115\) 1.00000 + 0.101021i 0.0932505 + 0.00942021i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.89898 0.449089
\(120\) 0 0
\(121\) 8.79796 0.799814
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.32577 10.6742i 0.297465 0.954733i
\(126\) 0 0
\(127\) 15.7980i 1.40184i −0.713239 0.700921i \(-0.752773\pi\)
0.713239 0.700921i \(-0.247227\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.8990 1.47647 0.738235 0.674543i \(-0.235659\pi\)
0.738235 + 0.674543i \(0.235659\pi\)
\(132\) 0 0
\(133\) 3.89898i 0.338084i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.65153i 0.226536i 0.993564 + 0.113268i \(0.0361318\pi\)
−0.993564 + 0.113268i \(0.963868\pi\)
\(138\) 0 0
\(139\) −19.6969 −1.67067 −0.835336 0.549739i \(-0.814727\pi\)
−0.835336 + 0.549739i \(0.814727\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 26.2474i 2.19492i
\(144\) 0 0
\(145\) −1.00000 + 9.89898i −0.0830455 + 0.822066i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.79796 0.802680 0.401340 0.915929i \(-0.368545\pi\)
0.401340 + 0.915929i \(0.368545\pi\)
\(150\) 0 0
\(151\) 15.8990 1.29384 0.646920 0.762558i \(-0.276057\pi\)
0.646920 + 0.762558i \(0.276057\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.34847 13.3485i 0.108312 1.07217i
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.449490 0.0354248
\(162\) 0 0
\(163\) 1.00000i 0.0783260i −0.999233 0.0391630i \(-0.987531\pi\)
0.999233 0.0391630i \(-0.0124692\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.7980i 1.68678i 0.537304 + 0.843388i \(0.319443\pi\)
−0.537304 + 0.843388i \(0.680557\pi\)
\(168\) 0 0
\(169\) −21.7980 −1.67677
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.10102i 0.539881i −0.962877 0.269940i \(-0.912996\pi\)
0.962877 0.269940i \(-0.0870040\pi\)
\(174\) 0 0
\(175\) 1.00000 4.89898i 0.0755929 0.370328i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.34847 −0.698737 −0.349369 0.936985i \(-0.613604\pi\)
−0.349369 + 0.936985i \(0.613604\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 22.0227 + 2.22474i 1.61914 + 0.163566i
\(186\) 0 0
\(187\) 21.7980i 1.59402i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.20204 0.159334 0.0796670 0.996822i \(-0.474614\pi\)
0.0796670 + 0.996822i \(0.474614\pi\)
\(192\) 0 0
\(193\) 14.1010i 1.01501i 0.861648 + 0.507507i \(0.169433\pi\)
−0.861648 + 0.507507i \(0.830567\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) −7.69694 −0.545622 −0.272811 0.962068i \(-0.587953\pi\)
−0.272811 + 0.962068i \(0.587953\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.44949i 0.312293i
\(204\) 0 0
\(205\) −1.20204 + 11.8990i −0.0839542 + 0.831061i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 17.3485 1.20002
\(210\) 0 0
\(211\) −21.6969 −1.49368 −0.746839 0.665004i \(-0.768430\pi\)
−0.746839 + 0.665004i \(0.768430\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.3485 1.34847i −0.910358 0.0919648i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −28.8990 −1.94396
\(222\) 0 0
\(223\) 13.5959i 0.910450i −0.890376 0.455225i \(-0.849559\pi\)
0.890376 0.455225i \(-0.150441\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.1464i 1.00530i 0.864489 + 0.502652i \(0.167642\pi\)
−0.864489 + 0.502652i \(0.832358\pi\)
\(228\) 0 0
\(229\) 9.79796 0.647467 0.323734 0.946148i \(-0.395062\pi\)
0.323734 + 0.946148i \(0.395062\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.69694i 0.176682i −0.996090 0.0883412i \(-0.971843\pi\)
0.996090 0.0883412i \(-0.0281566\pi\)
\(234\) 0 0
\(235\) 10.8990 + 1.10102i 0.710971 + 0.0718227i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.65153 −0.430252 −0.215126 0.976586i \(-0.569016\pi\)
−0.215126 + 0.976586i \(0.569016\pi\)
\(240\) 0 0
\(241\) 24.5959 1.58436 0.792181 0.610286i \(-0.208945\pi\)
0.792181 + 0.610286i \(0.208945\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.34847 + 13.3485i −0.0861505 + 0.852802i
\(246\) 0 0
\(247\) 23.0000i 1.46345i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.6515 0.924796 0.462398 0.886672i \(-0.346989\pi\)
0.462398 + 0.886672i \(0.346989\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.8990i 1.05413i 0.849825 + 0.527065i \(0.176707\pi\)
−0.849825 + 0.527065i \(0.823293\pi\)
\(258\) 0 0
\(259\) 9.89898 0.615093
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.10102i 0.437868i 0.975740 + 0.218934i \(0.0702579\pi\)
−0.975740 + 0.218934i \(0.929742\pi\)
\(264\) 0 0
\(265\) 1.00000 + 0.101021i 0.0614295 + 0.00620564i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −24.4949 −1.49348 −0.746740 0.665116i \(-0.768382\pi\)
−0.746740 + 0.665116i \(0.768382\pi\)
\(270\) 0 0
\(271\) −13.6969 −0.832030 −0.416015 0.909358i \(-0.636574\pi\)
−0.416015 + 0.909358i \(0.636574\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −21.7980 4.44949i −1.31447 0.268314i
\(276\) 0 0
\(277\) 2.20204i 0.132308i −0.997809 0.0661539i \(-0.978927\pi\)
0.997809 0.0661539i \(-0.0210728\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.69694 0.160886 0.0804429 0.996759i \(-0.474367\pi\)
0.0804429 + 0.996759i \(0.474367\pi\)
\(282\) 0 0
\(283\) 25.5959i 1.52152i −0.649034 0.760760i \(-0.724827\pi\)
0.649034 0.760760i \(-0.275173\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.34847i 0.315710i
\(288\) 0 0
\(289\) −7.00000 −0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.9444i 1.45727i 0.684904 + 0.728633i \(0.259844\pi\)
−0.684904 + 0.728633i \(0.740156\pi\)
\(294\) 0 0
\(295\) −1.10102 + 10.8990i −0.0641039 + 0.634563i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.65153 −0.153342
\(300\) 0 0
\(301\) −6.00000 −0.345834
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.42679 24.0227i 0.138957 1.37554i
\(306\) 0 0
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.4949 1.38898 0.694489 0.719503i \(-0.255630\pi\)
0.694489 + 0.719503i \(0.255630\pi\)
\(312\) 0 0
\(313\) 23.8990i 1.35085i 0.737429 + 0.675425i \(0.236040\pi\)
−0.737429 + 0.675425i \(0.763960\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.5959i 1.10062i 0.834962 + 0.550308i \(0.185490\pi\)
−0.834962 + 0.550308i \(0.814510\pi\)
\(318\) 0 0
\(319\) 19.7980 1.10847
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.1010i 1.06281i
\(324\) 0 0
\(325\) −5.89898 + 28.8990i −0.327217 + 1.60303i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.89898 0.270089
\(330\) 0 0
\(331\) 21.8990 1.20368 0.601838 0.798618i \(-0.294435\pi\)
0.601838 + 0.798618i \(0.294435\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.6742 1.07832i −0.583196 0.0589147i
\(336\) 0 0
\(337\) 29.8990i 1.62870i −0.580373 0.814351i \(-0.697093\pi\)
0.580373 0.814351i \(-0.302907\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −26.6969 −1.44572
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.2474i 0.764843i −0.923988 0.382422i \(-0.875090\pi\)
0.923988 0.382422i \(-0.124910\pi\)
\(348\) 0 0
\(349\) 10.7980 0.578001 0.289001 0.957329i \(-0.406677\pi\)
0.289001 + 0.957329i \(0.406677\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 33.7980i 1.79888i −0.437040 0.899442i \(-0.643973\pi\)
0.437040 0.899442i \(-0.356027\pi\)
\(354\) 0 0
\(355\) −3.69694 + 36.5959i −0.196213 + 1.94231i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.1464 −0.799398 −0.399699 0.916646i \(-0.630885\pi\)
−0.399699 + 0.916646i \(0.630885\pi\)
\(360\) 0 0
\(361\) −3.79796 −0.199893
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.1237 1.32577i −0.686927 0.0693937i
\(366\) 0 0
\(367\) 3.20204i 0.167145i −0.996502 0.0835726i \(-0.973367\pi\)
0.996502 0.0835726i \(-0.0266330\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.449490 0.0233363
\(372\) 0 0
\(373\) 7.69694i 0.398532i 0.979945 + 0.199266i \(0.0638558\pi\)
−0.979945 + 0.199266i \(0.936144\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 26.2474i 1.35181i
\(378\) 0 0
\(379\) −8.10102 −0.416121 −0.208061 0.978116i \(-0.566715\pi\)
−0.208061 + 0.978116i \(0.566715\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.3939i 1.50196i 0.660327 + 0.750978i \(0.270418\pi\)
−0.660327 + 0.750978i \(0.729582\pi\)
\(384\) 0 0
\(385\) −9.89898 1.00000i −0.504499 0.0509647i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −31.5959 −1.60198 −0.800988 0.598680i \(-0.795692\pi\)
−0.800988 + 0.598680i \(0.795692\pi\)
\(390\) 0 0
\(391\) −2.20204 −0.111362
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.32577 + 13.1237i −0.0667065 + 0.660326i
\(396\) 0 0
\(397\) 7.59592i 0.381228i 0.981665 + 0.190614i \(0.0610479\pi\)
−0.981665 + 0.190614i \(0.938952\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.65153 −0.132411 −0.0662056 0.997806i \(-0.521089\pi\)
−0.0662056 + 0.997806i \(0.521089\pi\)
\(402\) 0 0
\(403\) 35.3939i 1.76309i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 44.0454i 2.18325i
\(408\) 0 0
\(409\) 16.7980 0.830606 0.415303 0.909683i \(-0.363676\pi\)
0.415303 + 0.909683i \(0.363676\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.89898i 0.241063i
\(414\) 0 0
\(415\) −27.6969 2.79796i −1.35959 0.137346i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −31.5959 −1.54356 −0.771781 0.635889i \(-0.780634\pi\)
−0.771781 + 0.635889i \(0.780634\pi\)
\(420\) 0 0
\(421\) 9.20204 0.448480 0.224240 0.974534i \(-0.428010\pi\)
0.224240 + 0.974534i \(0.428010\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.89898 + 24.0000i −0.237635 + 1.16417i
\(426\) 0 0
\(427\) 10.7980i 0.522550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0454 −1.15823 −0.579113 0.815247i \(-0.696601\pi\)
−0.579113 + 0.815247i \(0.696601\pi\)
\(432\) 0 0
\(433\) 7.59592i 0.365037i −0.983202 0.182518i \(-0.941575\pi\)
0.983202 0.182518i \(-0.0584249\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.75255i 0.0838359i
\(438\) 0 0
\(439\) −27.7980 −1.32672 −0.663362 0.748299i \(-0.730871\pi\)
−0.663362 + 0.748299i \(0.730871\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 40.8990i 1.94317i 0.236693 + 0.971585i \(0.423937\pi\)
−0.236693 + 0.971585i \(0.576063\pi\)
\(444\) 0 0
\(445\) −2.69694 + 26.6969i −0.127847 + 1.26556i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.5959 1.49110 0.745552 0.666448i \(-0.232186\pi\)
0.745552 + 0.666448i \(0.232186\pi\)
\(450\) 0 0
\(451\) 23.7980 1.12060
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.32577 + 13.1237i −0.0621528 + 0.615250i
\(456\) 0 0
\(457\) 31.5959i 1.47799i −0.673708 0.738997i \(-0.735300\pi\)
0.673708 0.738997i \(-0.264700\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −21.7980 −1.01523 −0.507616 0.861583i \(-0.669473\pi\)
−0.507616 + 0.861583i \(0.669473\pi\)
\(462\) 0 0
\(463\) 32.5959i 1.51486i 0.652916 + 0.757430i \(0.273545\pi\)
−0.652916 + 0.757430i \(0.726455\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) −4.79796 −0.221549
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 26.6969i 1.22753i
\(474\) 0 0
\(475\) −19.1010 3.89898i −0.876415 0.178897i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −28.9444 −1.32250 −0.661251 0.750164i \(-0.729974\pi\)
−0.661251 + 0.750164i \(0.729974\pi\)
\(480\) 0 0
\(481\) −58.3939 −2.66253
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.5732 + 1.37117i 0.616328 + 0.0622618i
\(486\) 0 0
\(487\) 18.3939i 0.833506i 0.909020 + 0.416753i \(0.136832\pi\)
−0.909020 + 0.416753i \(0.863168\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −24.9444 −1.12572 −0.562862 0.826551i \(-0.690300\pi\)
−0.562862 + 0.826551i \(0.690300\pi\)
\(492\) 0 0
\(493\) 21.7980i 0.981731i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.4495i 0.737860i
\(498\) 0 0
\(499\) 37.3939 1.67398 0.836990 0.547218i \(-0.184313\pi\)
0.836990 + 0.547218i \(0.184313\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 33.3485i 1.48693i −0.668772 0.743467i \(-0.733180\pi\)
0.668772 0.743467i \(-0.266820\pi\)
\(504\) 0 0
\(505\) 3.79796 37.5959i 0.169007 1.67300i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −19.1464 −0.848651 −0.424325 0.905510i \(-0.639489\pi\)
−0.424325 + 0.905510i \(0.639489\pi\)
\(510\) 0 0
\(511\) −5.89898 −0.260955
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19.5732 1.97730i −0.862499 0.0871301i
\(516\) 0 0
\(517\) 21.7980i 0.958673i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.0454 −0.878205 −0.439103 0.898437i \(-0.644704\pi\)
−0.439103 + 0.898437i \(0.644704\pi\)
\(522\) 0 0
\(523\) 16.7980i 0.734523i 0.930118 + 0.367262i \(0.119705\pi\)
−0.930118 + 0.367262i \(0.880295\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.3939i 1.28042i
\(528\) 0 0
\(529\) 22.7980 0.991216
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 31.5505i 1.36660i
\(534\) 0 0
\(535\) 22.7980 + 2.30306i 0.985642 + 0.0995700i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26.6969 1.14992
\(540\) 0 0
\(541\) 38.5959 1.65937 0.829684 0.558233i \(-0.188521\pi\)
0.829684 + 0.558233i \(0.188521\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 11.0000i 0.470326i −0.971956 0.235163i \(-0.924438\pi\)
0.971956 0.235163i \(-0.0755624\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17.3485 0.739070
\(552\) 0 0
\(553\) 5.89898i 0.250850i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.1010i 0.809336i −0.914464 0.404668i \(-0.867387\pi\)
0.914464 0.404668i \(-0.132613\pi\)
\(558\) 0 0
\(559\) 35.3939 1.49700
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000i 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) −5.89898 0.595918i −0.248172 0.0250705i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.89898 0.205376 0.102688 0.994714i \(-0.467256\pi\)
0.102688 + 0.994714i \(0.467256\pi\)
\(570\) 0 0
\(571\) −10.3031 −0.431170 −0.215585 0.976485i \(-0.569166\pi\)
−0.215585 + 0.976485i \(0.569166\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.449490 + 2.20204i −0.0187450 + 0.0918315i
\(576\) 0 0
\(577\) 23.8990i 0.994928i −0.867485 0.497464i \(-0.834265\pi\)
0.867485 0.497464i \(-0.165735\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.4495 −0.516492
\(582\) 0 0
\(583\) 2.00000i 0.0828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.9444i 1.19466i 0.801995 + 0.597331i \(0.203772\pi\)
−0.801995 + 0.597331i \(0.796228\pi\)
\(588\) 0 0
\(589\) −23.3939 −0.963928
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.3485i 1.36946i 0.728798 + 0.684729i \(0.240079\pi\)
−0.728798 + 0.684729i \(0.759921\pi\)
\(594\) 0 0
\(595\) −1.10102 + 10.8990i −0.0451374 + 0.446815i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.8434 0.892496 0.446248 0.894909i \(-0.352760\pi\)
0.446248 + 0.894909i \(0.352760\pi\)
\(600\) 0 0
\(601\) 4.40408 0.179646 0.0898231 0.995958i \(-0.471370\pi\)
0.0898231 + 0.995958i \(0.471370\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.97730 + 19.5732i −0.0803885 + 0.795764i
\(606\) 0 0
\(607\) 8.59592i 0.348898i −0.984666 0.174449i \(-0.944186\pi\)
0.984666 0.174449i \(-0.0558143\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −28.8990 −1.16913
\(612\) 0 0
\(613\) 14.1010i 0.569535i −0.958597 0.284767i \(-0.908084\pi\)
0.958597 0.284767i \(-0.0919164\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.0454i 1.29010i −0.764141 0.645050i \(-0.776837\pi\)
0.764141 0.645050i \(-0.223163\pi\)
\(618\) 0 0
\(619\) −35.4949 −1.42666 −0.713330 0.700828i \(-0.752814\pi\)
−0.713330 + 0.700828i \(0.752814\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 23.0000 + 9.79796i 0.920000 + 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −48.4949 −1.93362
\(630\) 0 0
\(631\) 3.69694 0.147173 0.0735864 0.997289i \(-0.476556\pi\)
0.0735864 + 0.997289i \(0.476556\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 35.1464 + 3.55051i 1.39474 + 0.140898i
\(636\) 0 0
\(637\) 35.3939i 1.40236i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.2020 0.560947 0.280473 0.959862i \(-0.409509\pi\)
0.280473 + 0.959862i \(0.409509\pi\)
\(642\) 0 0
\(643\) 20.2020i 0.796691i 0.917236 + 0.398345i \(0.130415\pi\)
−0.917236 + 0.398345i \(0.869585\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.75255i 0.0688999i 0.999406 + 0.0344500i \(0.0109679\pi\)
−0.999406 + 0.0344500i \(0.989032\pi\)
\(648\) 0 0
\(649\) 21.7980 0.855645
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.79796i 0.383424i −0.981451 0.191712i \(-0.938596\pi\)
0.981451 0.191712i \(-0.0614039\pi\)
\(654\) 0 0
\(655\) −3.79796 + 37.5959i −0.148399 + 1.46899i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.2020 −0.553233 −0.276616 0.960980i \(-0.589213\pi\)
−0.276616 + 0.960980i \(0.589213\pi\)
\(660\) 0 0
\(661\) −27.2020 −1.05804 −0.529018 0.848610i \(-0.677440\pi\)
−0.529018 + 0.848610i \(0.677440\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.67423 0.876276i −0.336372 0.0339805i
\(666\) 0 0
\(667\) 2.00000i 0.0774403i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −48.0454 −1.85477
\(672\) 0 0
\(673\) 16.3031i 0.628437i 0.949351 + 0.314218i \(0.101742\pi\)
−0.949351 + 0.314218i \(0.898258\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.6969i 0.564849i −0.959289 0.282425i \(-0.908861\pi\)
0.959289 0.282425i \(-0.0911387\pi\)
\(678\) 0 0
\(679\) 6.10102 0.234136
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.3485i 1.12299i −0.827481 0.561494i \(-0.810227\pi\)
0.827481 0.561494i \(-0.189773\pi\)
\(684\) 0 0
\(685\) −5.89898 0.595918i −0.225388 0.0227689i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.65153 −0.101015
\(690\) 0 0
\(691\) −25.5959 −0.973715 −0.486857 0.873482i \(-0.661857\pi\)
−0.486857 + 0.873482i \(0.661857\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.42679 43.8207i 0.167918 1.66221i
\(696\) 0 0
\(697\) 26.2020i 0.992473i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.449490 −0.0169770 −0.00848850 0.999964i \(-0.502702\pi\)
−0.00848850 + 0.999964i \(0.502702\pi\)
\(702\) 0 0
\(703\) 38.5959i 1.45567i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.8990i 0.635552i
\(708\) 0 0
\(709\) −38.5959 −1.44950 −0.724750 0.689012i \(-0.758045\pi\)
−0.724750 + 0.689012i \(0.758045\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.69694i 0.101001i
\(714\) 0 0
\(715\) 58.3939 + 5.89898i 2.18381 + 0.220609i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.449490 −0.0167631 −0.00838157 0.999965i \(-0.502668\pi\)
−0.00838157 + 0.999965i \(0.502668\pi\)
\(720\) 0 0
\(721\) −8.79796 −0.327653
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −21.7980 4.44949i −0.809556 0.165250i
\(726\) 0 0
\(727\) 20.2020i 0.749252i −0.927176 0.374626i \(-0.877771\pi\)
0.927176 0.374626i \(-0.122229\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 29.3939 1.08717
\(732\) 0 0
\(733\) 33.7980i 1.24836i −0.781282 0.624178i \(-0.785434\pi\)
0.781282 0.624178i \(-0.214566\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.3485i 0.786381i
\(738\) 0 0
\(739\) −37.5959 −1.38299 −0.691494 0.722382i \(-0.743047\pi\)
−0.691494 + 0.722382i \(0.743047\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.8990i 1.06020i 0.847935 + 0.530100i \(0.177846\pi\)
−0.847935 + 0.530100i \(0.822154\pi\)
\(744\) 0 0
\(745\) −2.20204 + 21.7980i −0.0806765 + 0.798615i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.2474 0.374434
\(750\) 0 0
\(751\) −6.10102 −0.222629 −0.111315 0.993785i \(-0.535506\pi\)
−0.111315 + 0.993785i \(0.535506\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.57321 + 35.3712i −0.130043 + 1.28729i
\(756\) 0 0
\(757\) 13.6969i 0.497824i −0.968526 0.248912i \(-0.919927\pi\)
0.968526 0.248912i \(-0.0800729\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.3485 1.20888 0.604441 0.796650i \(-0.293397\pi\)
0.604441 + 0.796650i \(0.293397\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.8990i 1.04348i
\(768\) 0 0
\(769\) −42.3939 −1.52876 −0.764381 0.644765i \(-0.776955\pi\)
−0.764381 + 0.644765i \(0.776955\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 41.3485i 1.48720i 0.668624 + 0.743601i \(0.266884\pi\)
−0.668624 + 0.743601i \(0.733116\pi\)
\(774\) 0 0
\(775\) 29.3939 + 6.00000i 1.05586 + 0.215526i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.8536 0.747157
\(780\) 0 0
\(781\) 73.1918 2.61901
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.44949 0.449490i −0.158809 0.0160430i
\(786\) 0 0
\(787\) 40.7980i 1.45429i −0.686484 0.727145i \(-0.740847\pi\)
0.686484 0.727145i \(-0.259153\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.65153 −0.0942776
\(792\) 0 0
\(793\) 63.6969i 2.26194i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36.4949i 1.29272i 0.763034 + 0.646358i \(0.223709\pi\)
−0.763034 + 0.646358i \(0.776291\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0