Properties

Label 2160.2.f.m.1729.4
Level $2160$
Weight $2$
Character 2160.1729
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(1729,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1729");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1729.4
Root \(2.17945 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2160.1729
Dual form 2160.2.f.m.1729.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.17945 + 0.500000i) q^{5} -4.35890i q^{7} +O(q^{10})\) \(q+(2.17945 + 0.500000i) q^{5} -4.35890i q^{7} -4.35890 q^{11} -4.00000i q^{17} +6.00000 q^{19} +2.00000i q^{23} +(4.50000 + 2.17945i) q^{25} -7.00000 q^{31} +(2.17945 - 9.50000i) q^{35} -8.71780i q^{37} -8.71780 q^{41} -8.71780i q^{43} +2.00000i q^{47} -12.0000 q^{49} -3.00000i q^{53} +(-9.50000 - 2.17945i) q^{55} +8.71780 q^{59} -4.00000 q^{61} -8.71780i q^{67} -4.35890i q^{73} +19.0000i q^{77} +5.00000i q^{83} +(2.00000 - 8.71780i) q^{85} +8.71780 q^{89} +(13.0767 + 3.00000i) q^{95} -4.35890i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 24 q^{19} + 18 q^{25} - 28 q^{31} - 48 q^{49} - 38 q^{55} - 16 q^{61} + 8 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.17945 + 0.500000i 0.974679 + 0.223607i
\(6\) 0 0
\(7\) 4.35890i 1.64751i −0.566947 0.823754i \(-0.691875\pi\)
0.566947 0.823754i \(-0.308125\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.35890 −1.31426 −0.657129 0.753778i \(-0.728229\pi\)
−0.657129 + 0.753778i \(0.728229\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000i 0.970143i −0.874475 0.485071i \(-0.838794\pi\)
0.874475 0.485071i \(-0.161206\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000i 0.417029i 0.978019 + 0.208514i \(0.0668628\pi\)
−0.978019 + 0.208514i \(0.933137\pi\)
\(24\) 0 0
\(25\) 4.50000 + 2.17945i 0.900000 + 0.435890i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.17945 9.50000i 0.368394 1.60579i
\(36\) 0 0
\(37\) 8.71780i 1.43320i −0.697486 0.716599i \(-0.745698\pi\)
0.697486 0.716599i \(-0.254302\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.71780 −1.36149 −0.680746 0.732520i \(-0.738344\pi\)
−0.680746 + 0.732520i \(0.738344\pi\)
\(42\) 0 0
\(43\) 8.71780i 1.32945i −0.747087 0.664726i \(-0.768548\pi\)
0.747087 0.664726i \(-0.231452\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) −12.0000 −1.71429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000i 0.412082i −0.978543 0.206041i \(-0.933942\pi\)
0.978543 0.206041i \(-0.0660580\pi\)
\(54\) 0 0
\(55\) −9.50000 2.17945i −1.28098 0.293877i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.71780 1.13496 0.567480 0.823387i \(-0.307918\pi\)
0.567480 + 0.823387i \(0.307918\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.71780i 1.06505i −0.846415 0.532524i \(-0.821244\pi\)
0.846415 0.532524i \(-0.178756\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.35890i 0.510171i −0.966919 0.255085i \(-0.917896\pi\)
0.966919 0.255085i \(-0.0821035\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 19.0000i 2.16525i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.00000i 0.548821i 0.961613 + 0.274411i \(0.0884828\pi\)
−0.961613 + 0.274411i \(0.911517\pi\)
\(84\) 0 0
\(85\) 2.00000 8.71780i 0.216930 0.945578i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.71780 0.924085 0.462042 0.886858i \(-0.347117\pi\)
0.462042 + 0.886858i \(0.347117\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13.0767 + 3.00000i 1.34164 + 0.307794i
\(96\) 0 0
\(97\) 4.35890i 0.442579i −0.975208 0.221290i \(-0.928973\pi\)
0.975208 0.221290i \(-0.0710266\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.35890 −0.433727 −0.216863 0.976202i \(-0.569583\pi\)
−0.216863 + 0.976202i \(0.569583\pi\)
\(102\) 0 0
\(103\) 8.71780i 0.858990i 0.903069 + 0.429495i \(0.141308\pi\)
−0.903069 + 0.429495i \(0.858692\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.0000i 1.45010i 0.688694 + 0.725052i \(0.258184\pi\)
−0.688694 + 0.725052i \(0.741816\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.0000i 1.69330i −0.532152 0.846649i \(-0.678617\pi\)
0.532152 0.846649i \(-0.321383\pi\)
\(114\) 0 0
\(115\) −1.00000 + 4.35890i −0.0932505 + 0.406469i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −17.4356 −1.59832
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.71780 + 7.00000i 0.779744 + 0.626099i
\(126\) 0 0
\(127\) 4.35890i 0.386790i −0.981121 0.193395i \(-0.938050\pi\)
0.981121 0.193395i \(-0.0619498\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.0767 −1.14252 −0.571258 0.820770i \(-0.693544\pi\)
−0.571258 + 0.820770i \(0.693544\pi\)
\(132\) 0 0
\(133\) 26.1534i 2.26779i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.35890 0.357095 0.178547 0.983931i \(-0.442860\pi\)
0.178547 + 0.983931i \(0.442860\pi\)
\(150\) 0 0
\(151\) 11.0000 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15.2561 3.50000i −1.22540 0.281127i
\(156\) 0 0
\(157\) 17.4356i 1.39151i −0.718278 0.695756i \(-0.755069\pi\)
0.718278 0.695756i \(-0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.71780 0.687059
\(162\) 0 0
\(163\) 17.4356i 1.36566i −0.730577 0.682831i \(-0.760749\pi\)
0.730577 0.682831i \(-0.239251\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000i 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.0000i 1.44454i −0.691609 0.722272i \(-0.743098\pi\)
0.691609 0.722272i \(-0.256902\pi\)
\(174\) 0 0
\(175\) 9.50000 19.6150i 0.718132 1.48276i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.7945 1.62900 0.814499 0.580166i \(-0.197012\pi\)
0.814499 + 0.580166i \(0.197012\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.35890 19.0000i 0.320473 1.39691i
\(186\) 0 0
\(187\) 17.4356i 1.27502i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 21.7945i 1.56880i 0.620254 + 0.784401i \(0.287030\pi\)
−0.620254 + 0.784401i \(0.712970\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000i 0.356235i −0.984009 0.178118i \(-0.942999\pi\)
0.984009 0.178118i \(-0.0570008\pi\)
\(198\) 0 0
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −19.0000 4.35890i −1.32702 0.304439i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −26.1534 −1.80907
\(210\) 0 0
\(211\) −6.00000 −0.413057 −0.206529 0.978441i \(-0.566217\pi\)
−0.206529 + 0.978441i \(0.566217\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.35890 19.0000i 0.297274 1.29579i
\(216\) 0 0
\(217\) 30.5123i 2.07131i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.71780i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942853\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 0 0
\(235\) −1.00000 + 4.35890i −0.0652328 + 0.284343i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.71780 −0.563907 −0.281954 0.959428i \(-0.590982\pi\)
−0.281954 + 0.959428i \(0.590982\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −26.1534 6.00000i −1.67088 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.1534 1.65079 0.825394 0.564557i \(-0.190953\pi\)
0.825394 + 0.564557i \(0.190953\pi\)
\(252\) 0 0
\(253\) 8.71780i 0.548083i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) −38.0000 −2.36121
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.00000i 0.123325i 0.998097 + 0.0616626i \(0.0196403\pi\)
−0.998097 + 0.0616626i \(0.980360\pi\)
\(264\) 0 0
\(265\) 1.50000 6.53835i 0.0921443 0.401648i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 5.00000 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −19.6150 9.50000i −1.18283 0.572872i
\(276\) 0 0
\(277\) 17.4356i 1.04760i 0.851840 + 0.523802i \(0.175487\pi\)
−0.851840 + 0.523802i \(0.824513\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 8.71780i 0.518219i 0.965848 + 0.259110i \(0.0834291\pi\)
−0.965848 + 0.259110i \(0.916571\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 38.0000i 2.24307i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) 19.0000 + 4.35890i 1.10622 + 0.253785i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −38.0000 −2.19028
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.71780 2.00000i −0.499180 0.114520i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.1534 1.48302 0.741511 0.670940i \(-0.234109\pi\)
0.741511 + 0.670940i \(0.234109\pi\)
\(312\) 0 0
\(313\) 21.7945i 1.23190i 0.787786 + 0.615949i \(0.211227\pi\)
−0.787786 + 0.615949i \(0.788773\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.0000i 0.954815i 0.878682 + 0.477408i \(0.158423\pi\)
−0.878682 + 0.477408i \(0.841577\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.71780 0.480628
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.35890 19.0000i 0.238152 1.03808i
\(336\) 0 0
\(337\) 17.4356i 0.949777i 0.880046 + 0.474889i \(0.157512\pi\)
−0.880046 + 0.474889i \(0.842488\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.5123 1.65233
\(342\) 0 0
\(343\) 21.7945i 1.17679i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0000i 1.44944i 0.689046 + 0.724718i \(0.258030\pi\)
−0.689046 + 0.724718i \(0.741970\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.0000i 1.38384i 0.721974 + 0.691920i \(0.243235\pi\)
−0.721974 + 0.691920i \(0.756765\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.1534 −1.38032 −0.690162 0.723655i \(-0.742461\pi\)
−0.690162 + 0.723655i \(0.742461\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.17945 9.50000i 0.114078 0.497253i
\(366\) 0 0
\(367\) 4.35890i 0.227533i −0.993508 0.113766i \(-0.963708\pi\)
0.993508 0.113766i \(-0.0362915\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.0767 −0.678908
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.00000i 0.204390i 0.994764 + 0.102195i \(0.0325866\pi\)
−0.994764 + 0.102195i \(0.967413\pi\)
\(384\) 0 0
\(385\) −9.50000 + 41.4095i −0.484165 + 2.11043i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.35890 −0.221005 −0.110502 0.993876i \(-0.535246\pi\)
−0.110502 + 0.993876i \(0.535246\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 34.8712i 1.75013i −0.484001 0.875067i \(-0.660817\pi\)
0.484001 0.875067i \(-0.339183\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.8712 1.74138 0.870692 0.491828i \(-0.163671\pi\)
0.870692 + 0.491828i \(0.163671\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 38.0000i 1.88359i
\(408\) 0 0
\(409\) 31.0000 1.53285 0.766426 0.642333i \(-0.222033\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 38.0000i 1.86986i
\(414\) 0 0
\(415\) −2.50000 + 10.8972i −0.122720 + 0.534925i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.71780 −0.425892 −0.212946 0.977064i \(-0.568306\pi\)
−0.212946 + 0.977064i \(0.568306\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.71780 18.0000i 0.422875 0.873128i
\(426\) 0 0
\(427\) 17.4356i 0.843768i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.71780 0.419922 0.209961 0.977710i \(-0.432666\pi\)
0.209961 + 0.977710i \(0.432666\pi\)
\(432\) 0 0
\(433\) 21.7945i 1.04738i 0.851910 + 0.523688i \(0.175444\pi\)
−0.851910 + 0.523688i \(0.824556\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) 9.00000 0.429547 0.214773 0.976664i \(-0.431099\pi\)
0.214773 + 0.976664i \(0.431099\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) 19.0000 + 4.35890i 0.900686 + 0.206632i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.1534 1.23425 0.617127 0.786863i \(-0.288296\pi\)
0.617127 + 0.786863i \(0.288296\pi\)
\(450\) 0 0
\(451\) 38.0000 1.78935
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.35890i 0.203901i 0.994789 + 0.101950i \(0.0325083\pi\)
−0.994789 + 0.101950i \(0.967492\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −39.2301 −1.82713 −0.913564 0.406696i \(-0.866681\pi\)
−0.913564 + 0.406696i \(0.866681\pi\)
\(462\) 0 0
\(463\) 13.0767i 0.607726i 0.952716 + 0.303863i \(0.0982765\pi\)
−0.952716 + 0.303863i \(0.901724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.0000i 0.971764i −0.874024 0.485882i \(-0.838498\pi\)
0.874024 0.485882i \(-0.161502\pi\)
\(468\) 0 0
\(469\) −38.0000 −1.75468
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 38.0000i 1.74724i
\(474\) 0 0
\(475\) 27.0000 + 13.0767i 1.23884 + 0.600000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.71780 −0.398326 −0.199163 0.979966i \(-0.563822\pi\)
−0.199163 + 0.979966i \(0.563822\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.17945 9.50000i 0.0989637 0.431373i
\(486\) 0 0
\(487\) 26.1534i 1.18512i 0.805525 + 0.592562i \(0.201883\pi\)
−0.805525 + 0.592562i \(0.798117\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.0767 −0.590143 −0.295072 0.955475i \(-0.595343\pi\)
−0.295072 + 0.955475i \(0.595343\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 30.0000 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.0000i 1.33763i −0.743427 0.668817i \(-0.766801\pi\)
0.743427 0.668817i \(-0.233199\pi\)
\(504\) 0 0
\(505\) −9.50000 2.17945i −0.422744 0.0969842i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.0767 −0.579614 −0.289807 0.957085i \(-0.593591\pi\)
−0.289807 + 0.957085i \(0.593591\pi\)
\(510\) 0 0
\(511\) −19.0000 −0.840511
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.35890 + 19.0000i −0.192076 + 0.837240i
\(516\) 0 0
\(517\) 8.71780i 0.383408i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.4356 −0.763867 −0.381934 0.924190i \(-0.624742\pi\)
−0.381934 + 0.924190i \(0.624742\pi\)
\(522\) 0 0
\(523\) 34.8712i 1.52481i 0.647100 + 0.762405i \(0.275982\pi\)
−0.647100 + 0.762405i \(0.724018\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.0000i 1.21970i
\(528\) 0 0
\(529\) 19.0000 0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −7.50000 + 32.6917i −0.324253 + 1.41339i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 52.3068 2.25301
\(540\) 0 0
\(541\) 40.0000 1.71973 0.859867 0.510518i \(-0.170546\pi\)
0.859867 + 0.510518i \(0.170546\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −21.7945 5.00000i −0.933574 0.214176i
\(546\) 0 0
\(547\) 17.4356i 0.745492i −0.927933 0.372746i \(-0.878416\pi\)
0.927933 0.372746i \(-0.121584\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.0000i 1.39825i 0.714997 + 0.699127i \(0.246428\pi\)
−0.714997 + 0.699127i \(0.753572\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.0000i 0.463595i −0.972764 0.231797i \(-0.925539\pi\)
0.972764 0.231797i \(-0.0744606\pi\)
\(564\) 0 0
\(565\) 9.00000 39.2301i 0.378633 1.65042i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.4356 −0.730938 −0.365469 0.930823i \(-0.619091\pi\)
−0.365469 + 0.930823i \(0.619091\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.35890 + 9.00000i −0.181779 + 0.375326i
\(576\) 0 0
\(577\) 17.4356i 0.725853i 0.931818 + 0.362927i \(0.118222\pi\)
−0.931818 + 0.362927i \(0.881778\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21.7945 0.904188
\(582\) 0 0
\(583\) 13.0767i 0.541581i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.00000i 0.123823i 0.998082 + 0.0619116i \(0.0197197\pi\)
−0.998082 + 0.0619116i \(0.980280\pi\)
\(588\) 0 0
\(589\) −42.0000 −1.73058
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) −38.0000 8.71780i −1.55785 0.357395i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.1534 1.06860 0.534299 0.845295i \(-0.320576\pi\)
0.534299 + 0.845295i \(0.320576\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.4356 + 4.00000i 0.708858 + 0.162623i
\(606\) 0 0
\(607\) 8.71780i 0.353845i −0.984225 0.176922i \(-0.943386\pi\)
0.984225 0.176922i \(-0.0566141\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 8.71780i 0.352109i 0.984380 + 0.176054i \(0.0563334\pi\)
−0.984380 + 0.176054i \(0.943667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000i 0.0805170i 0.999189 + 0.0402585i \(0.0128181\pi\)
−0.999189 + 0.0402585i \(0.987182\pi\)
\(618\) 0 0
\(619\) 32.0000 1.28619 0.643094 0.765787i \(-0.277650\pi\)
0.643094 + 0.765787i \(0.277650\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 38.0000i 1.52244i
\(624\) 0 0
\(625\) 15.5000 + 19.6150i 0.620000 + 0.784602i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −34.8712 −1.39041
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.17945 9.50000i 0.0864888 0.376996i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.71780 −0.344332 −0.172166 0.985068i \(-0.555077\pi\)
−0.172166 + 0.985068i \(0.555077\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) 0 0
\(649\) −38.0000 −1.49163
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.0000i 1.36966i −0.728705 0.684828i \(-0.759877\pi\)
0.728705 0.684828i \(-0.240123\pi\)
\(654\) 0 0
\(655\) −28.5000 6.53835i −1.11359 0.255474i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.35890 −0.169799 −0.0848993 0.996390i \(-0.527057\pi\)
−0.0848993 + 0.996390i \(0.527057\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.0767 57.0000i 0.507093 2.21037i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.4356 0.673094
\(672\) 0 0
\(673\) 13.0767i 0.504070i 0.967718 + 0.252035i \(0.0810997\pi\)
−0.967718 + 0.252035i \(0.918900\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.0000i 0.999261i 0.866239 + 0.499631i \(0.166531\pi\)
−0.866239 + 0.499631i \(0.833469\pi\)
\(678\) 0 0
\(679\) −19.0000 −0.729153
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.0000i 0.765279i 0.923898 + 0.382639i \(0.124985\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(684\) 0 0
\(685\) −9.00000 + 39.2301i −0.343872 + 1.49890i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.71780 + 2.00000i 0.330685 + 0.0758643i
\(696\) 0 0
\(697\) 34.8712i 1.32084i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −21.7945 −0.823167 −0.411583 0.911372i \(-0.635024\pi\)
−0.411583 + 0.911372i \(0.635024\pi\)
\(702\) 0 0
\(703\) 52.3068i 1.97279i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.0000i 0.714569i
\(708\) 0 0
\(709\) −12.0000 −0.450669 −0.225335 0.974281i \(-0.572348\pi\)
−0.225335 + 0.974281i \(0.572348\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.0000i 0.524304i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34.8712 −1.30048 −0.650238 0.759731i \(-0.725331\pi\)
−0.650238 + 0.759731i \(0.725331\pi\)
\(720\) 0 0
\(721\) 38.0000 1.41519
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 39.2301i 1.45496i 0.686127 + 0.727482i \(0.259309\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −34.8712 −1.28976
\(732\) 0 0
\(733\) 8.71780i 0.321999i −0.986954 0.161000i \(-0.948528\pi\)
0.986954 0.161000i \(-0.0514718\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 38.0000i 1.39975i
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 48.0000i 1.76095i −0.474093 0.880475i \(-0.657224\pi\)
0.474093 0.880475i \(-0.342776\pi\)
\(744\) 0 0
\(745\) 9.50000 + 2.17945i 0.348053 + 0.0798489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 65.3835 2.38906
\(750\) 0 0
\(751\) −35.0000 −1.27717 −0.638584 0.769552i \(-0.720480\pi\)
−0.638584 + 0.769552i \(0.720480\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23.9739 + 5.50000i 0.872501 + 0.200165i
\(756\) 0 0
\(757\) 8.71780i 0.316854i −0.987371 0.158427i \(-0.949358\pi\)
0.987371 0.158427i \(-0.0506422\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −52.3068 −1.89612 −0.948060 0.318092i \(-0.896958\pi\)
−0.948060 + 0.318092i \(0.896958\pi\)
\(762\) 0 0
\(763\) 43.5890i 1.57803i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −9.00000 −0.324548 −0.162274 0.986746i \(-0.551883\pi\)
−0.162274 + 0.986746i \(0.551883\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.0000i 0.647415i 0.946157 + 0.323708i \(0.104929\pi\)
−0.946157 + 0.323708i \(0.895071\pi\)
\(774\) 0 0
\(775\) −31.5000 15.2561i −1.13151 0.548017i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −52.3068 −1.87409
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.71780 38.0000i 0.311152 1.35628i
\(786\) 0 0
\(787\) 17.4356i 0.621512i −0.950490 0.310756i \(-0.899418\pi\)
0.950490 0.310756i \(-0.100582\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −78.4602 −2.78972
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 37.0000i 1.31061i −0.755366 0.655304i \(-0.772541\pi\)
0.755366 0.655304i \(-0.227459\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\)