Properties

Label 2160.2.f.m
Level $2160$
Weight $2$
Character orbit 2160.f
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(1729,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1729");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + ( - 2 \beta_{3} - 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{5} + ( - 2 \beta_{3} - 1) q^{7} + (\beta_{2} - 2 \beta_1) q^{11} - 4 \beta_{2} q^{17} + 6 q^{19} + 2 \beta_{2} q^{23} + (\beta_{3} + 5) q^{25} - 7 q^{31} + ( - 10 \beta_{2} + \beta_1) q^{35} + ( - 4 \beta_{3} - 2) q^{37} + (2 \beta_{2} - 4 \beta_1) q^{41} + ( - 4 \beta_{3} - 2) q^{43} + 2 \beta_{2} q^{47} - 12 q^{49} - 3 \beta_{2} q^{53} + ( - \beta_{3} - 10) q^{55} + ( - 2 \beta_{2} + 4 \beta_1) q^{59} - 4 q^{61} + ( - 4 \beta_{3} - 2) q^{67} + ( - 2 \beta_{3} - 1) q^{73} + 19 \beta_{2} q^{77} + 5 \beta_{2} q^{83} - 4 \beta_{3} q^{85} + ( - 2 \beta_{2} + 4 \beta_1) q^{89} + 6 \beta_1 q^{95} + ( - 2 \beta_{3} - 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 24 q^{19} + 18 q^{25} - 28 q^{31} - 48 q^{49} - 38 q^{55} - 16 q^{61} + 8 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 4\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{2} + 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1729.1
−2.17945 0.500000i
−2.17945 + 0.500000i
2.17945 0.500000i
2.17945 + 0.500000i
0 0 0 −2.17945 0.500000i 0 4.35890i 0 0 0
1729.2 0 0 0 −2.17945 + 0.500000i 0 4.35890i 0 0 0
1729.3 0 0 0 2.17945 0.500000i 0 4.35890i 0 0 0
1729.4 0 0 0 2.17945 + 0.500000i 0 4.35890i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.f.m 4
3.b odd 2 1 inner 2160.2.f.m 4
4.b odd 2 1 270.2.c.c 4
5.b even 2 1 inner 2160.2.f.m 4
12.b even 2 1 270.2.c.c 4
15.d odd 2 1 inner 2160.2.f.m 4
20.d odd 2 1 270.2.c.c 4
20.e even 4 1 1350.2.a.w 2
20.e even 4 1 1350.2.a.x 2
36.f odd 6 2 810.2.i.h 8
36.h even 6 2 810.2.i.h 8
60.h even 2 1 270.2.c.c 4
60.l odd 4 1 1350.2.a.w 2
60.l odd 4 1 1350.2.a.x 2
180.n even 6 2 810.2.i.h 8
180.p odd 6 2 810.2.i.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.2.c.c 4 4.b odd 2 1
270.2.c.c 4 12.b even 2 1
270.2.c.c 4 20.d odd 2 1
270.2.c.c 4 60.h even 2 1
810.2.i.h 8 36.f odd 6 2
810.2.i.h 8 36.h even 6 2
810.2.i.h 8 180.n even 6 2
810.2.i.h 8 180.p odd 6 2
1350.2.a.w 2 20.e even 4 1
1350.2.a.w 2 60.l odd 4 1
1350.2.a.x 2 20.e even 4 1
1350.2.a.x 2 60.l odd 4 1
2160.2.f.m 4 1.a even 1 1 trivial
2160.2.f.m 4 3.b odd 2 1 inner
2160.2.f.m 4 5.b even 2 1 inner
2160.2.f.m 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{2} + 19 \) Copy content Toggle raw display
\( T_{11}^{2} - 19 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 9T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 19)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 19)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$19$ \( (T - 6)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T + 7)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 76)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 76)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 76)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 76)^{2} \) Copy content Toggle raw display
$61$ \( (T + 4)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 76)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 19)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 76)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 19)^{2} \) Copy content Toggle raw display
show more
show less