Properties

Label 2160.2.by.a
Level $2160$
Weight $2$
Character orbit 2160.by
Analytic conductor $17.248$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(289,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{12}^{3} + \cdots + 2 \zeta_{12}) q^{5}+ \cdots + \zeta_{12} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{12}^{3} + \cdots + 2 \zeta_{12}) q^{5}+ \cdots + 16 \zeta_{12} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} - 4 q^{11} + 8 q^{19} + 6 q^{25} + 14 q^{29} - 12 q^{31} + 8 q^{35} + 10 q^{41} - 12 q^{49} + 8 q^{55} - 24 q^{59} + 14 q^{61} - 8 q^{65} - 40 q^{71} - 8 q^{79} - 24 q^{85} - 60 q^{89} - 8 q^{91} - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 0 0 −2.23205 + 0.133975i 0 −0.866025 0.500000i 0 0 0
289.2 0 0 0 1.23205 1.86603i 0 0.866025 + 0.500000i 0 0 0
1009.1 0 0 0 −2.23205 0.133975i 0 −0.866025 + 0.500000i 0 0 0
1009.2 0 0 0 1.23205 + 1.86603i 0 0.866025 0.500000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.2.by.a 4
3.b odd 2 1 720.2.by.b 4
4.b odd 2 1 1080.2.bi.a 4
5.b even 2 1 inner 2160.2.by.a 4
9.c even 3 1 inner 2160.2.by.a 4
9.d odd 6 1 720.2.by.b 4
12.b even 2 1 360.2.bi.a 4
15.d odd 2 1 720.2.by.b 4
20.d odd 2 1 1080.2.bi.a 4
36.f odd 6 1 1080.2.bi.a 4
36.f odd 6 1 3240.2.f.e 2
36.h even 6 1 360.2.bi.a 4
36.h even 6 1 3240.2.f.b 2
45.h odd 6 1 720.2.by.b 4
45.j even 6 1 inner 2160.2.by.a 4
60.h even 2 1 360.2.bi.a 4
180.n even 6 1 360.2.bi.a 4
180.n even 6 1 3240.2.f.b 2
180.p odd 6 1 1080.2.bi.a 4
180.p odd 6 1 3240.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.bi.a 4 12.b even 2 1
360.2.bi.a 4 36.h even 6 1
360.2.bi.a 4 60.h even 2 1
360.2.bi.a 4 180.n even 6 1
720.2.by.b 4 3.b odd 2 1
720.2.by.b 4 9.d odd 6 1
720.2.by.b 4 15.d odd 2 1
720.2.by.b 4 45.h odd 6 1
1080.2.bi.a 4 4.b odd 2 1
1080.2.bi.a 4 20.d odd 2 1
1080.2.bi.a 4 36.f odd 6 1
1080.2.bi.a 4 180.p odd 6 1
2160.2.by.a 4 1.a even 1 1 trivial
2160.2.by.a 4 5.b even 2 1 inner
2160.2.by.a 4 9.c even 3 1 inner
2160.2.by.a 4 45.j even 6 1 inner
3240.2.f.b 2 36.h even 6 1
3240.2.f.b 2 180.n even 6 1
3240.2.f.e 2 36.f odd 6 1
3240.2.f.e 2 180.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{4} - T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$17$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$47$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$53$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 12 T + 144)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$71$ \( (T + 10)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$89$ \( (T + 15)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 256 T^{2} + 65536 \) Copy content Toggle raw display
show more
show less