Properties

Label 2160.1.bn.a
Level $2160$
Weight $1$
Character orbit 2160.bn
Analytic conductor $1.078$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,1,Mod(269,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2160.bn (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.07798042729\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.276480.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{8}^{2} q^{2} - q^{4} - \zeta_{8} q^{5} + (\zeta_{8}^{3} - \zeta_{8}) q^{7} - \zeta_{8}^{2} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{8}^{2} q^{2} - q^{4} - \zeta_{8} q^{5} + (\zeta_{8}^{3} - \zeta_{8}) q^{7} - \zeta_{8}^{2} q^{8} - \zeta_{8}^{3} q^{10} + \zeta_{8} q^{11} - \zeta_{8}^{3} q^{13} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{14} + q^{16} - q^{17} + (\zeta_{8}^{2} + 1) q^{19} + \zeta_{8} q^{20} + \zeta_{8}^{3} q^{22} + \zeta_{8}^{2} q^{23} + \zeta_{8}^{2} q^{25} + \zeta_{8} q^{26} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{28} + \zeta_{8}^{3} q^{29} + q^{31} + \zeta_{8}^{2} q^{32} - \zeta_{8}^{2} q^{34} + (\zeta_{8}^{2} + 1) q^{35} + (\zeta_{8}^{2} - 1) q^{38} + \zeta_{8}^{3} q^{40} + \zeta_{8} q^{43} - \zeta_{8} q^{44} - q^{46} + q^{47} + q^{49} - q^{50} + \zeta_{8}^{3} q^{52} + (\zeta_{8}^{2} - 1) q^{53} - \zeta_{8}^{2} q^{55} + (\zeta_{8}^{3} + \zeta_{8}) q^{56} - \zeta_{8} q^{58} + \zeta_{8}^{2} q^{62} - q^{64} - q^{65} + q^{68} + (\zeta_{8}^{2} - 1) q^{70} + (\zeta_{8}^{3} - \zeta_{8}) q^{71} + ( - \zeta_{8}^{2} - 1) q^{76} + ( - \zeta_{8}^{2} - 1) q^{77} + q^{79} - \zeta_{8} q^{80} + \zeta_{8} q^{85} + \zeta_{8}^{3} q^{86} - \zeta_{8}^{3} q^{88} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{89} + (\zeta_{8}^{2} - 1) q^{91} - \zeta_{8}^{2} q^{92} + \zeta_{8}^{2} q^{94} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{95} + (\zeta_{8}^{3} + \zeta_{8}) q^{97} + \zeta_{8}^{2} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 4 q^{16} - 4 q^{17} + 4 q^{19} + 4 q^{31} + 4 q^{35} - 4 q^{38} - 4 q^{46} + 4 q^{47} + 4 q^{49} - 4 q^{50} - 4 q^{53} - 4 q^{64} - 4 q^{65} + 4 q^{68} - 4 q^{70} - 4 q^{76} - 4 q^{77} + 4 q^{79} - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{8}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
1.00000i 0 −1.00000 −0.707107 0.707107i 0 −1.41421 1.00000i 0 0.707107 0.707107i
269.2 1.00000i 0 −1.00000 0.707107 + 0.707107i 0 1.41421 1.00000i 0 −0.707107 + 0.707107i
1349.1 1.00000i 0 −1.00000 −0.707107 + 0.707107i 0 −1.41421 1.00000i 0 0.707107 + 0.707107i
1349.2 1.00000i 0 −1.00000 0.707107 0.707107i 0 1.41421 1.00000i 0 −0.707107 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 inner
16.e even 4 1 inner
240.bm odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2160.1.bn.a 4
3.b odd 2 1 2160.1.bn.b yes 4
5.b even 2 1 2160.1.bn.b yes 4
15.d odd 2 1 inner 2160.1.bn.a 4
16.e even 4 1 inner 2160.1.bn.a 4
48.i odd 4 1 2160.1.bn.b yes 4
80.q even 4 1 2160.1.bn.b yes 4
240.bm odd 4 1 inner 2160.1.bn.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2160.1.bn.a 4 1.a even 1 1 trivial
2160.1.bn.a 4 15.d odd 2 1 inner
2160.1.bn.a 4 16.e even 4 1 inner
2160.1.bn.a 4 240.bm odd 4 1 inner
2160.1.bn.b yes 4 3.b odd 2 1
2160.1.bn.b yes 4 5.b even 2 1
2160.1.bn.b yes 4 48.i odd 4 1
2160.1.bn.b yes 4 80.q even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2160, [\chi])\):

\( T_{7}^{2} - 2 \) Copy content Toggle raw display
\( T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 1 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 1 \) Copy content Toggle raw display
$31$ \( (T - 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 1 \) Copy content Toggle raw display
$47$ \( (T - 1)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T - 1)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
show more
show less