Properties

Label 216.6.a.g
Level $216$
Weight $6$
Character orbit 216.a
Self dual yes
Analytic conductor $34.643$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [216,6,Mod(1,216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("216.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6429050796\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{85}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{85}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 14) q^{5} + (2 \beta + 27) q^{7} + (3 \beta + 74) q^{11} + (10 \beta + 121) q^{13} + ( - 13 \beta + 106) q^{17} + ( - 8 \beta - 31) q^{19} + (23 \beta + 1154) q^{23} + (28 \beta + 131) q^{25}+ \cdots + ( - 1208 \beta - 69715) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 28 q^{5} + 54 q^{7} + 148 q^{11} + 242 q^{13} + 212 q^{17} - 62 q^{19} + 2308 q^{23} + 262 q^{25} + 2400 q^{29} - 968 q^{31} + 12996 q^{35} - 8178 q^{37} + 19200 q^{41} + 11264 q^{43} + 28116 q^{47}+ \cdots - 139430 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.10977
5.10977
0 0 0 −41.3173 0 −83.6345 0 0 0
1.2 0 0 0 69.3173 0 137.635 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 216.6.a.g yes 2
3.b odd 2 1 216.6.a.d 2
4.b odd 2 1 432.6.a.t 2
12.b even 2 1 432.6.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
216.6.a.d 2 3.b odd 2 1
216.6.a.g yes 2 1.a even 1 1 trivial
432.6.a.m 2 12.b even 2 1
432.6.a.t 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 28T_{5} - 2864 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(216))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 28T - 2864 \) Copy content Toggle raw display
$7$ \( T^{2} - 54T - 11511 \) Copy content Toggle raw display
$11$ \( T^{2} - 148T - 22064 \) Copy content Toggle raw display
$13$ \( T^{2} - 242T - 291359 \) Copy content Toggle raw display
$17$ \( T^{2} - 212T - 505904 \) Copy content Toggle raw display
$19$ \( T^{2} + 62T - 194879 \) Copy content Toggle raw display
$23$ \( T^{2} - 2308 T - 287024 \) Copy content Toggle raw display
$29$ \( T^{2} - 2400 T - 22256640 \) Copy content Toggle raw display
$31$ \( T^{2} + 968 T - 23462384 \) Copy content Toggle raw display
$37$ \( T^{2} + 8178 T - 98446239 \) Copy content Toggle raw display
$41$ \( T^{2} - 19200 T + 13824000 \) Copy content Toggle raw display
$43$ \( T^{2} - 11264 T - 138710336 \) Copy content Toggle raw display
$47$ \( T^{2} - 28116 T + 183891024 \) Copy content Toggle raw display
$53$ \( T^{2} - 46984 T + 531298624 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1165001264 \) Copy content Toggle raw display
$61$ \( T^{2} + 11770 T - 181880135 \) Copy content Toggle raw display
$67$ \( T^{2} - 34522 T + 297158761 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2594799424 \) Copy content Toggle raw display
$73$ \( T^{2} + 56158 T + 787989601 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 5283833015 \) Copy content Toggle raw display
$83$ \( T^{2} - 86216 T - 765576896 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 6252742224 \) Copy content Toggle raw display
$97$ \( T^{2} + 139430 T + 394833385 \) Copy content Toggle raw display
show more
show less