Properties

Label 216.6.a.c
Level $216$
Weight $6$
Character orbit 216.a
Self dual yes
Analytic conductor $34.643$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [216,6,Mod(1,216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("216.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6429050796\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{185}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{185}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 19) q^{5} + (\beta - 147) q^{7} + ( - 6 \beta + 65) q^{11} + (2 \beta - 56) q^{13} + ( - 2 \beta - 1292) q^{17} + ( - 16 \beta + 962) q^{19} + ( - 14 \beta + 2438) q^{23} + (38 \beta + 3896) q^{25}+ \cdots + ( - 1072 \beta - 26881) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 38 q^{5} - 294 q^{7} + 130 q^{11} - 112 q^{13} - 2584 q^{17} + 1924 q^{19} + 4876 q^{23} + 7792 q^{25} + 1548 q^{29} + 2806 q^{31} - 7734 q^{35} + 4428 q^{37} + 5652 q^{41} + 9476 q^{43} + 14028 q^{47}+ \cdots - 53762 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.30074
−6.30074
0 0 0 −100.609 0 −65.3912 0 0 0
1.2 0 0 0 62.6088 0 −228.609 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 216.6.a.c 2
3.b odd 2 1 216.6.a.h yes 2
4.b odd 2 1 432.6.a.l 2
12.b even 2 1 432.6.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
216.6.a.c 2 1.a even 1 1 trivial
216.6.a.h yes 2 3.b odd 2 1
432.6.a.l 2 4.b odd 2 1
432.6.a.u 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 38T_{5} - 6299 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(216))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 38T - 6299 \) Copy content Toggle raw display
$7$ \( T^{2} + 294T + 14949 \) Copy content Toggle raw display
$11$ \( T^{2} - 130T - 235535 \) Copy content Toggle raw display
$13$ \( T^{2} + 112T - 23504 \) Copy content Toggle raw display
$17$ \( T^{2} + 2584 T + 1642624 \) Copy content Toggle raw display
$19$ \( T^{2} - 1924 T - 779516 \) Copy content Toggle raw display
$23$ \( T^{2} - 4876 T + 4638484 \) Copy content Toggle raw display
$29$ \( T^{2} - 1548 T - 10056924 \) Copy content Toggle raw display
$31$ \( T^{2} - 2806 T - 74281931 \) Copy content Toggle raw display
$37$ \( T^{2} - 4428 T - 75684204 \) Copy content Toggle raw display
$41$ \( T^{2} - 5652 T + 1166436 \) Copy content Toggle raw display
$43$ \( T^{2} - 9476 T - 188566796 \) Copy content Toggle raw display
$47$ \( T^{2} - 14028 T - 34346844 \) Copy content Toggle raw display
$53$ \( T^{2} + 15770 T - 884405915 \) Copy content Toggle raw display
$59$ \( T^{2} + 33752 T - 61414064 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2225147584 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1184550100 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 3416143744 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1223201879 \) Copy content Toggle raw display
$79$ \( T^{2} - 27752 T + 189319936 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 3623071201 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 11166238836 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 6930977279 \) Copy content Toggle raw display
show more
show less