Properties

Label 216.4.d
Level $216$
Weight $4$
Character orbit 216.d
Rep. character $\chi_{216}(109,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $4$
Sturm bound $144$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 216.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(216, [\chi])\).

Total New Old
Modular forms 114 48 66
Cusp forms 102 48 54
Eisenstein series 12 0 12

Trace form

\( 48 q - 6 q^{4} - 66 q^{10} - 270 q^{16} - 30 q^{22} - 1200 q^{25} - 534 q^{28} + 264 q^{31} + 516 q^{34} + 882 q^{40} - 756 q^{46} + 1992 q^{49} - 696 q^{52} - 144 q^{55} + 516 q^{58} + 6 q^{64} - 2298 q^{70}+ \cdots + 1536 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(216, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
216.4.d.a 216.d 8.b $4$ $12.744$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-6}) \) 216.4.d.a \(0\) \(0\) \(0\) \(68\) $\mathrm{U}(1)[D_{2}]$ \(q-2\beta_{2} q^{2}-8 q^{4}+(-7\beta_{2}+\beta_1)q^{5}+\cdots\)
216.4.d.b 216.d 8.b $4$ $12.744$ \(\Q(i, \sqrt{7})\) None 216.4.d.b \(0\) \(0\) \(0\) \(100\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(6+2\beta _{3})q^{4}-5\beta _{1}q^{5}+\cdots\)
216.4.d.c 216.d 8.b $16$ $12.744$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 216.4.d.c \(0\) \(0\) \(0\) \(-168\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{13}q^{5}+(-11+\cdots)q^{7}+\cdots\)
216.4.d.d 216.d 8.b $24$ $12.744$ None 216.4.d.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(216, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(216, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)