Defining parameters
Level: | \( N \) | \(=\) | \( 216 = 2^{3} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 216.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(216, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 114 | 48 | 66 |
Cusp forms | 102 | 48 | 54 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(216, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
216.4.d.a | $4$ | $12.744$ | \(\Q(\zeta_{8})\) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(68\) | \(q-2\beta_{2} q^{2}-8 q^{4}+(-7\beta_{2}+\beta_1)q^{5}+\cdots\) |
216.4.d.b | $4$ | $12.744$ | \(\Q(i, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(100\) | \(q+(\beta _{1}+\beta _{2})q^{2}+(6+2\beta _{3})q^{4}-5\beta _{1}q^{5}+\cdots\) |
216.4.d.c | $16$ | $12.744$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-168\) | \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{13}q^{5}+(-11+\cdots)q^{7}+\cdots\) |
216.4.d.d | $24$ | $12.744$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(216, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(216, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)