Newspace parameters
Level: | \( N \) | \(=\) | \( 216 = 2^{3} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 216.m (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.88557371018\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{4} \) |
Twist minimal: | no (minimal twist has level 72) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( 4\nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( 2\nu^{3} \)
|
\(\nu\) | \(=\) |
\( ( \beta_1 ) / 4 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{3} ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/216\mathbb{Z}\right)^\times\).
\(n\) | \(55\) | \(109\) | \(137\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1 - \beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 |
|
0 | 0 | 0 | −6.39898 | − | 3.69445i | 0 | 3.39898 | + | 5.88721i | 0 | 0 | 0 | ||||||||||||||||||||||||||
17.2 | 0 | 0 | 0 | 3.39898 | + | 1.96240i | 0 | −6.39898 | − | 11.0834i | 0 | 0 | 0 | |||||||||||||||||||||||||||
89.1 | 0 | 0 | 0 | −6.39898 | + | 3.69445i | 0 | 3.39898 | − | 5.88721i | 0 | 0 | 0 | |||||||||||||||||||||||||||
89.2 | 0 | 0 | 0 | 3.39898 | − | 1.96240i | 0 | −6.39898 | + | 11.0834i | 0 | 0 | 0 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 216.3.m.a | 4 | |
3.b | odd | 2 | 1 | 72.3.m.a | ✓ | 4 | |
4.b | odd | 2 | 1 | 432.3.q.c | 4 | ||
8.b | even | 2 | 1 | 1728.3.q.e | 4 | ||
8.d | odd | 2 | 1 | 1728.3.q.f | 4 | ||
9.c | even | 3 | 1 | 72.3.m.a | ✓ | 4 | |
9.c | even | 3 | 1 | 648.3.e.b | 4 | ||
9.d | odd | 6 | 1 | inner | 216.3.m.a | 4 | |
9.d | odd | 6 | 1 | 648.3.e.b | 4 | ||
12.b | even | 2 | 1 | 144.3.q.d | 4 | ||
24.f | even | 2 | 1 | 576.3.q.c | 4 | ||
24.h | odd | 2 | 1 | 576.3.q.h | 4 | ||
36.f | odd | 6 | 1 | 144.3.q.d | 4 | ||
36.f | odd | 6 | 1 | 1296.3.e.c | 4 | ||
36.h | even | 6 | 1 | 432.3.q.c | 4 | ||
36.h | even | 6 | 1 | 1296.3.e.c | 4 | ||
72.j | odd | 6 | 1 | 1728.3.q.e | 4 | ||
72.l | even | 6 | 1 | 1728.3.q.f | 4 | ||
72.n | even | 6 | 1 | 576.3.q.h | 4 | ||
72.p | odd | 6 | 1 | 576.3.q.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.3.m.a | ✓ | 4 | 3.b | odd | 2 | 1 | |
72.3.m.a | ✓ | 4 | 9.c | even | 3 | 1 | |
144.3.q.d | 4 | 12.b | even | 2 | 1 | ||
144.3.q.d | 4 | 36.f | odd | 6 | 1 | ||
216.3.m.a | 4 | 1.a | even | 1 | 1 | trivial | |
216.3.m.a | 4 | 9.d | odd | 6 | 1 | inner | |
432.3.q.c | 4 | 4.b | odd | 2 | 1 | ||
432.3.q.c | 4 | 36.h | even | 6 | 1 | ||
576.3.q.c | 4 | 24.f | even | 2 | 1 | ||
576.3.q.c | 4 | 72.p | odd | 6 | 1 | ||
576.3.q.h | 4 | 24.h | odd | 2 | 1 | ||
576.3.q.h | 4 | 72.n | even | 6 | 1 | ||
648.3.e.b | 4 | 9.c | even | 3 | 1 | ||
648.3.e.b | 4 | 9.d | odd | 6 | 1 | ||
1296.3.e.c | 4 | 36.f | odd | 6 | 1 | ||
1296.3.e.c | 4 | 36.h | even | 6 | 1 | ||
1728.3.q.e | 4 | 8.b | even | 2 | 1 | ||
1728.3.q.e | 4 | 72.j | odd | 6 | 1 | ||
1728.3.q.f | 4 | 8.d | odd | 2 | 1 | ||
1728.3.q.f | 4 | 72.l | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 6T_{5}^{3} - 17T_{5}^{2} - 174T_{5} + 841 \)
acting on \(S_{3}^{\mathrm{new}}(216, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} \)
$5$
\( T^{4} + 6 T^{3} - 17 T^{2} - 174 T + 841 \)
$7$
\( T^{4} + 6 T^{3} + 123 T^{2} + \cdots + 7569 \)
$11$
\( T^{4} - 18 T^{3} + 7 T^{2} + \cdots + 10201 \)
$13$
\( T^{4} + 14 T^{3} + 243 T^{2} + \cdots + 2209 \)
$17$
\( T^{4} + 640T^{2} + 4096 \)
$19$
\( (T^{2} - 4 T - 380)^{2} \)
$23$
\( T^{4} + 30 T^{3} + 343 T^{2} + \cdots + 1849 \)
$29$
\( T^{4} + 6 T^{3} - 273 T^{2} + \cdots + 81225 \)
$31$
\( T^{4} - 74 T^{3} + 4203 T^{2} + \cdots + 1620529 \)
$37$
\( (T^{2} + 60 T + 516)^{2} \)
$41$
\( (T^{2} - 69 T + 1587)^{2} \)
$43$
\( T^{4} - 10 T^{3} + 1611 T^{2} + \cdots + 2283121 \)
$47$
\( T^{4} + 174 T^{3} + 12327 T^{2} + \cdots + 4995225 \)
$53$
\( T^{4} + 10240 T^{2} + \cdots + 1048576 \)
$59$
\( T^{4} - 18 T^{3} + 7 T^{2} + \cdots + 10201 \)
$61$
\( T^{4} + 62 T^{3} + 2979 T^{2} + \cdots + 748225 \)
$67$
\( T^{4} + 22 T^{3} + 9963 T^{2} + \cdots + 89851441 \)
$71$
\( T^{4} + 3712 T^{2} + \cdots + 2560000 \)
$73$
\( (T^{2} - 20 T - 3356)^{2} \)
$79$
\( T^{4} + 86 T^{3} + 10251 T^{2} + \cdots + 8151025 \)
$83$
\( T^{4} - 66 T^{3} - 4457 T^{2} + \cdots + 34916281 \)
$89$
\( T^{4} + 5760 T^{2} + 331776 \)
$97$
\( T^{4} - 242 T^{3} + \cdots + 203262049 \)
show more
show less