Defining parameters
Level: | \( N \) | \(=\) | \( 216 = 2^{3} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 216.m (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(216, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 12 | 156 |
Cusp forms | 120 | 12 | 108 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(216, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
216.3.m.a | $4$ | $5.886$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(-6\) | \(-6\) | \(q+(-1+\beta _{1}-\beta _{2})q^{5}+(-\beta _{1}-3\beta _{2}+\cdots)q^{7}+\cdots\) |
216.3.m.b | $8$ | $5.886$ | 8.0.\(\cdots\).9 | None | \(0\) | \(0\) | \(6\) | \(6\) | \(q+(1-\beta _{1}-\beta _{2}+\beta _{4})q^{5}+(1-\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(216, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(216, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)