Properties

Label 216.2.t
Level $216$
Weight $2$
Character orbit 216.t
Rep. character $\chi_{216}(13,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $204$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 216.t (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 216 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(216, [\chi])\).

Total New Old
Modular forms 228 228 0
Cusp forms 204 204 0
Eisenstein series 24 24 0

Trace form

\( 204 q - 6 q^{2} - 6 q^{4} - 6 q^{6} - 12 q^{7} - 3 q^{8} - 12 q^{9} + O(q^{10}) \) \( 204 q - 6 q^{2} - 6 q^{4} - 6 q^{6} - 12 q^{7} - 3 q^{8} - 12 q^{9} - 3 q^{10} + 3 q^{12} - 21 q^{14} - 12 q^{15} - 6 q^{16} - 6 q^{17} - 27 q^{18} + 15 q^{20} - 6 q^{22} - 12 q^{23} - 12 q^{25} - 30 q^{26} - 12 q^{28} - 39 q^{30} - 12 q^{31} - 36 q^{32} - 36 q^{36} - 42 q^{38} - 12 q^{39} - 21 q^{40} - 24 q^{41} - 66 q^{42} + 21 q^{44} - 3 q^{46} - 12 q^{47} + 51 q^{48} - 12 q^{49} - 99 q^{50} - 33 q^{52} - 90 q^{54} - 24 q^{55} + 99 q^{56} - 30 q^{57} + 21 q^{58} + 102 q^{60} - 36 q^{62} - 72 q^{63} - 3 q^{64} - 12 q^{65} - 9 q^{66} + 75 q^{68} + 9 q^{70} - 90 q^{71} + 60 q^{72} - 6 q^{73} + 9 q^{74} - 18 q^{76} + 12 q^{78} - 12 q^{79} + 78 q^{80} - 12 q^{81} - 12 q^{82} + 102 q^{84} - 30 q^{86} - 48 q^{87} - 30 q^{88} - 6 q^{89} + 6 q^{90} + 111 q^{92} - 33 q^{94} - 42 q^{95} + 126 q^{96} - 12 q^{97} + 54 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(216, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
216.2.t.a \(204\) \(1.725\) None \(-6\) \(0\) \(0\) \(-12\)