Properties

Label 216.2.q
Level $216$
Weight $2$
Character orbit 216.q
Rep. character $\chi_{216}(25,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $54$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 216.q (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(216, [\chi])\).

Total New Old
Modular forms 240 54 186
Cusp forms 192 54 138
Eisenstein series 48 0 48

Trace form

\( 54q + O(q^{10}) \) \( 54q + 3q^{11} + 12q^{15} + 12q^{17} + 12q^{21} + 12q^{23} - 15q^{27} - 18q^{29} - 9q^{33} - 36q^{35} - 36q^{39} - 21q^{41} + 9q^{43} - 54q^{45} - 54q^{47} + 18q^{49} - 42q^{51} - 36q^{53} - 45q^{57} - 42q^{59} + 18q^{61} - 36q^{63} - 72q^{65} + 9q^{67} - 48q^{69} + 18q^{75} - 12q^{77} - 12q^{81} + 30q^{83} + 30q^{87} + 45q^{89} + 72q^{93} + 138q^{95} - 27q^{97} + 138q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(216, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
216.2.q.a \(24\) \(1.725\) None \(0\) \(0\) \(0\) \(-3\)
216.2.q.b \(30\) \(1.725\) None \(0\) \(0\) \(0\) \(3\)

Decomposition of \(S_{2}^{\mathrm{old}}(216, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(216, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database