Properties

Label 216.2.n
Level $216$
Weight $2$
Character orbit 216.n
Rep. character $\chi_{216}(37,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 216.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(216, [\chi])\).

Total New Old
Modular forms 84 28 56
Cusp forms 60 20 40
Eisenstein series 24 8 16

Trace form

\( 20 q + q^{2} - q^{4} - 2 q^{7} + 10 q^{8} - 8 q^{10} - 8 q^{14} - q^{16} + 8 q^{17} + 16 q^{20} - 5 q^{22} + 14 q^{23} - 20 q^{26} + 4 q^{28} - 2 q^{31} - 19 q^{32} - 9 q^{34} - 25 q^{38} - 2 q^{40}+ \cdots - 102 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(216, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
216.2.n.a 216.n 72.n $4$ $1.725$ \(\Q(\zeta_{12})\) None 72.2.n.a \(2\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+2\zeta_{12}q^{4}+\cdots\)
216.2.n.b 216.n 72.n $16$ $1.725$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 72.2.n.b \(-1\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{7}q^{2}+(\beta _{4}-\beta _{9})q^{4}+(\beta _{5}-\beta _{6}-\beta _{8}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(216, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(216, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)