Defining parameters
Level: | \( N \) | \(=\) | \( 216 = 2^{3} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 216.l (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(216, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 28 | 56 |
Cusp forms | 60 | 20 | 40 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(216, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
216.2.l.a | $4$ | $1.725$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+2\beta _{3}q^{8}+(3-\beta _{1}+\cdots)q^{11}+\cdots\) |
216.2.l.b | $16$ | $1.725$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(3\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{11}q^{2}+(-1-\beta _{1}+\beta _{2}-\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(216, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(216, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)