Defining parameters
Level: | \( N \) | \(=\) | \( 216 = 2^{3} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 216.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(216))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 4 | 44 |
Cusp forms | 25 | 4 | 21 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(216))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
216.2.a.a | $1$ | $1.725$ | \(\Q\) | None | \(0\) | \(0\) | \(-4\) | \(-3\) | $+$ | $+$ | \(q-4q^{5}-3q^{7}-4q^{11}+q^{13}+4q^{17}+\cdots\) | |
216.2.a.b | $1$ | $1.725$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(3\) | $+$ | $-$ | \(q-q^{5}+3q^{7}+5q^{11}+4q^{13}-8q^{17}+\cdots\) | |
216.2.a.c | $1$ | $1.725$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(3\) | $-$ | $+$ | \(q+q^{5}+3q^{7}-5q^{11}+4q^{13}+8q^{17}+\cdots\) | |
216.2.a.d | $1$ | $1.725$ | \(\Q\) | None | \(0\) | \(0\) | \(4\) | \(-3\) | $-$ | $+$ | \(q+4q^{5}-3q^{7}+4q^{11}+q^{13}-4q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(216))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(216)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 2}\)