Properties

Label 216.2
Level 216
Weight 2
Dimension 544
Nonzero newspaces 9
Newform subspaces 20
Sturm bound 5184
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 20 \)
Sturm bound: \(5184\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(216))\).

Total New Old
Modular forms 1476 608 868
Cusp forms 1117 544 573
Eisenstein series 359 64 295

Trace form

\( 544 q - 8 q^{2} - 12 q^{3} - 14 q^{4} - 2 q^{5} - 12 q^{6} - 14 q^{7} - 2 q^{8} - 24 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{12} + 10 q^{13} - 2 q^{14} - 10 q^{16} + 10 q^{17} - 12 q^{18} + 2 q^{19} - 14 q^{20}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(216))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
216.2.a \(\chi_{216}(1, \cdot)\) 216.2.a.a 1 1
216.2.a.b 1
216.2.a.c 1
216.2.a.d 1
216.2.c \(\chi_{216}(215, \cdot)\) None 0 1
216.2.d \(\chi_{216}(109, \cdot)\) 216.2.d.a 4 1
216.2.d.b 4
216.2.d.c 8
216.2.f \(\chi_{216}(107, \cdot)\) 216.2.f.a 8 1
216.2.f.b 8
216.2.i \(\chi_{216}(73, \cdot)\) 216.2.i.a 2 2
216.2.i.b 4
216.2.l \(\chi_{216}(35, \cdot)\) 216.2.l.a 4 2
216.2.l.b 16
216.2.n \(\chi_{216}(37, \cdot)\) 216.2.n.a 4 2
216.2.n.b 16
216.2.o \(\chi_{216}(71, \cdot)\) None 0 2
216.2.q \(\chi_{216}(25, \cdot)\) 216.2.q.a 24 6
216.2.q.b 30
216.2.t \(\chi_{216}(13, \cdot)\) 216.2.t.a 204 6
216.2.v \(\chi_{216}(11, \cdot)\) 216.2.v.a 12 6
216.2.v.b 192
216.2.w \(\chi_{216}(23, \cdot)\) None 0 6

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(216))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(216)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 2}\)