Defining parameters
Level: | \( N \) | \(=\) | \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2156.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(1344\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2156))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1032 | 103 | 929 |
Cusp forms | 984 | 103 | 881 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(24\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(28\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(27\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(24\) |
Plus space | \(+\) | \(55\) | ||
Minus space | \(-\) | \(48\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2156))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2156))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2156)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(308))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(539))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1078))\)\(^{\oplus 2}\)