Defining parameters
Level: | \( N \) | \(=\) | \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2156.x (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Sturm bound: | \(672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1440 | 160 | 1280 |
Cusp forms | 1248 | 160 | 1088 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(308, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1078, [\chi])\)\(^{\oplus 2}\)