Properties

Label 2156.2.i.o
Level $2156$
Weight $2$
Character orbit 2156.i
Analytic conductor $17.216$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(177,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{7} q^{3} + (\beta_{7} - \beta_{6} + \cdots - \beta_{3}) q^{5}+ \cdots + ( - \beta_{2} + \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{7} q^{3} + (\beta_{7} - \beta_{6} + \cdots - \beta_{3}) q^{5}+ \cdots + ( - \beta_{4} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{9} + 4 q^{11} + 24 q^{15} - 4 q^{25} + 16 q^{29} - 20 q^{37} - 24 q^{39} + 32 q^{43} + 8 q^{51} + 16 q^{53} + 48 q^{57} - 24 q^{65} - 32 q^{67} + 32 q^{71} - 16 q^{79} + 8 q^{81} - 40 q^{93} - 48 q^{95} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{6} + \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{7} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{24}^{6} + 2\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{7} + \zeta_{24}^{5} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( -2\beta_{7} + \beta_{6} + 3\beta_{5} - \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( -\beta_{4} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} - \beta_{6} + \beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
177.1
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0 −0.965926 1.67303i 0 −1.67303 + 2.89778i 0 0 0 −0.366025 + 0.633975i 0
177.2 0 −0.258819 0.448288i 0 0.448288 0.776457i 0 0 0 1.36603 2.36603i 0
177.3 0 0.258819 + 0.448288i 0 −0.448288 + 0.776457i 0 0 0 1.36603 2.36603i 0
177.4 0 0.965926 + 1.67303i 0 1.67303 2.89778i 0 0 0 −0.366025 + 0.633975i 0
1145.1 0 −0.965926 + 1.67303i 0 −1.67303 2.89778i 0 0 0 −0.366025 0.633975i 0
1145.2 0 −0.258819 + 0.448288i 0 0.448288 + 0.776457i 0 0 0 1.36603 + 2.36603i 0
1145.3 0 0.258819 0.448288i 0 −0.448288 0.776457i 0 0 0 1.36603 + 2.36603i 0
1145.4 0 0.965926 1.67303i 0 1.67303 + 2.89778i 0 0 0 −0.366025 0.633975i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 177.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.i.o 8
7.b odd 2 1 inner 2156.2.i.o 8
7.c even 3 1 2156.2.a.l 4
7.c even 3 1 inner 2156.2.i.o 8
7.d odd 6 1 2156.2.a.l 4
7.d odd 6 1 inner 2156.2.i.o 8
28.f even 6 1 8624.2.a.cs 4
28.g odd 6 1 8624.2.a.cs 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2156.2.a.l 4 7.c even 3 1
2156.2.a.l 4 7.d odd 6 1
2156.2.i.o 8 1.a even 1 1 trivial
2156.2.i.o 8 7.b odd 2 1 inner
2156.2.i.o 8 7.c even 3 1 inner
2156.2.i.o 8 7.d odd 6 1 inner
8624.2.a.cs 4 28.f even 6 1
8624.2.a.cs 4 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2156, [\chi])\):

\( T_{3}^{8} + 4T_{3}^{6} + 15T_{3}^{4} + 4T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} + 12T_{5}^{6} + 135T_{5}^{4} + 108T_{5}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} + 12 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 24)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} + 16 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$19$ \( T^{8} + 48 T^{6} + \cdots + 20736 \) Copy content Toggle raw display
$23$ \( (T^{4} + 27 T^{2} + 729)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 4 T - 44)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} + 148 T^{6} + \cdots + 28398241 \) Copy content Toggle raw display
$37$ \( (T^{4} + 10 T^{3} + \cdots + 529)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 16 T^{2} + 16)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{8} \) Copy content Toggle raw display
$47$ \( T^{8} + 156 T^{6} + \cdots + 18974736 \) Copy content Toggle raw display
$53$ \( (T^{4} - 8 T^{3} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 52 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{8} + 208 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$67$ \( (T^{4} + 16 T^{3} + \cdots + 3721)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 8 T - 11)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} + 144 T^{6} + \cdots + 1679616 \) Copy content Toggle raw display
$79$ \( (T^{4} + 8 T^{3} + 60 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 96)^{4} \) Copy content Toggle raw display
$89$ \( T^{8} + 76 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$97$ \( (T^{4} - 364 T^{2} + 32041)^{2} \) Copy content Toggle raw display
show more
show less