Properties

Label 2156.2.i.n
Level $2156$
Weight $2$
Character orbit 2156.i
Analytic conductor $17.216$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(177,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.7342972683264.14
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 151x^{4} + 234x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{7} q^{5} + (\beta_{6} - \beta_{3} + 4 \beta_{2}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + \beta_{7} q^{5} + (\beta_{6} - \beta_{3} + 4 \beta_{2}) q^{9} + ( - \beta_{2} - 1) q^{11} + ( - \beta_{7} - \beta_{5} + \cdots - \beta_1) q^{13}+ \cdots + (\beta_{3} + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 14 q^{9} - 4 q^{11} + 4 q^{15} - 14 q^{23} - 10 q^{25} - 48 q^{29} + 2 q^{37} - 28 q^{39} + 8 q^{43} - 24 q^{51} + 4 q^{53} - 104 q^{57} - 32 q^{65} - 34 q^{67} + 4 q^{71} - 24 q^{79} - 68 q^{81} - 56 q^{85} - 26 q^{93} + 4 q^{95} + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 13x^{6} + 151x^{4} + 234x^{2} + 324 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 13\nu^{6} + 151\nu^{4} + 1963\nu^{2} + 324 ) / 2718 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 823 ) / 151 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 1276\nu ) / 453 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -13\nu^{7} - 151\nu^{5} - 1963\nu^{3} - 3042\nu ) / 2718 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -73\nu^{6} - 1057\nu^{4} - 11023\nu^{2} - 17082 ) / 2718 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 56\nu^{7} + 755\nu^{5} + 8456\nu^{3} + 13104\nu ) / 4077 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{3} + 7\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{7} - 10\beta_{5} + 3\beta_{4} - 10\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -13\beta_{6} - 73\beta_{2} - 73 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 39\beta_{7} + 112\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 151\beta_{3} + 823 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -453\beta_{4} + 1276\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
177.1
−1.69000 2.92717i
−0.627609 1.08705i
0.627609 + 1.08705i
1.69000 + 2.92717i
−1.69000 + 2.92717i
−0.627609 + 1.08705i
0.627609 1.08705i
1.69000 2.92717i
0 −1.69000 2.92717i 0 −0.802429 + 1.38985i 0 0 0 −4.21221 + 7.29577i 0
177.2 0 −0.627609 1.08705i 0 1.76242 3.05259i 0 0 0 0.712214 1.23359i 0
177.3 0 0.627609 + 1.08705i 0 −1.76242 + 3.05259i 0 0 0 0.712214 1.23359i 0
177.4 0 1.69000 + 2.92717i 0 0.802429 1.38985i 0 0 0 −4.21221 + 7.29577i 0
1145.1 0 −1.69000 + 2.92717i 0 −0.802429 1.38985i 0 0 0 −4.21221 7.29577i 0
1145.2 0 −0.627609 + 1.08705i 0 1.76242 + 3.05259i 0 0 0 0.712214 + 1.23359i 0
1145.3 0 0.627609 1.08705i 0 −1.76242 3.05259i 0 0 0 0.712214 + 1.23359i 0
1145.4 0 1.69000 2.92717i 0 0.802429 + 1.38985i 0 0 0 −4.21221 7.29577i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 177.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.i.n 8
7.b odd 2 1 inner 2156.2.i.n 8
7.c even 3 1 2156.2.a.m 4
7.c even 3 1 inner 2156.2.i.n 8
7.d odd 6 1 2156.2.a.m 4
7.d odd 6 1 inner 2156.2.i.n 8
28.f even 6 1 8624.2.a.cx 4
28.g odd 6 1 8624.2.a.cx 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2156.2.a.m 4 7.c even 3 1
2156.2.a.m 4 7.d odd 6 1
2156.2.i.n 8 1.a even 1 1 trivial
2156.2.i.n 8 7.b odd 2 1 inner
2156.2.i.n 8 7.c even 3 1 inner
2156.2.i.n 8 7.d odd 6 1 inner
8624.2.a.cx 4 28.f even 6 1
8624.2.a.cx 4 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2156, [\chi])\):

\( T_{3}^{8} + 13T_{3}^{6} + 151T_{3}^{4} + 234T_{3}^{2} + 324 \) Copy content Toggle raw display
\( T_{5}^{8} + 15T_{5}^{6} + 193T_{5}^{4} + 480T_{5}^{2} + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 13 T^{6} + \cdots + 324 \) Copy content Toggle raw display
$5$ \( T^{8} + 15 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} - 30 T^{2} + 128)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 26 T^{6} + \cdots + 5184 \) Copy content Toggle raw display
$19$ \( T^{8} + 52 T^{6} + \cdots + 82944 \) Copy content Toggle raw display
$23$ \( (T^{4} + 7 T^{3} + \cdots + 144)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 13 T^{6} + \cdots + 324 \) Copy content Toggle raw display
$37$ \( (T^{4} - T^{3} + 25 T^{2} + \cdots + 576)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 154 T^{2} + 5832)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 2 T - 96)^{4} \) Copy content Toggle raw display
$47$ \( T^{8} + 26 T^{6} + \cdots + 5184 \) Copy content Toggle raw display
$53$ \( (T^{4} - 2 T^{3} + \cdots + 9216)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 69 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$61$ \( T^{8} + 138 T^{6} + \cdots + 64 \) Copy content Toggle raw display
$67$ \( (T^{4} + 17 T^{3} + \cdots + 2304)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - T - 24)^{4} \) Copy content Toggle raw display
$73$ \( T^{8} + 234 T^{6} + \cdots + 34012224 \) Copy content Toggle raw display
$79$ \( (T^{2} + 6 T + 36)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 104 T^{2} + 1152)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 215 T^{6} + \cdots + 107495424 \) Copy content Toggle raw display
$97$ \( (T^{4} - 71 T^{2} + 72)^{2} \) Copy content Toggle raw display
show more
show less