Properties

Label 2156.2.i.m
Level $2156$
Weight $2$
Character orbit 2156.i
Analytic conductor $17.216$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(177,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.27870912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} + 2x^{3} + 38x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 308)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1) q^{3} + (\beta_{5} - \beta_{3} + \beta_1) q^{5} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} - \beta_1) q^{3} + (\beta_{5} - \beta_{3} + \beta_1) q^{5} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{9}+ \cdots + ( - \beta_{3} - \beta_{2} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{3} + q^{5} - 4 q^{9} - 3 q^{11} + 24 q^{13} + 18 q^{15} - 2 q^{17} + 2 q^{19} + 7 q^{23} - 18 q^{25} - 14 q^{27} + 12 q^{29} + 9 q^{31} + q^{33} - 7 q^{37} - 4 q^{41} - 8 q^{43} + 34 q^{45} + 4 q^{47} + 30 q^{51} - 2 q^{53} - 2 q^{55} + 52 q^{57} + 23 q^{59} - 14 q^{61} + 28 q^{65} + 5 q^{67} + 38 q^{69} - 10 q^{71} + 14 q^{73} + 48 q^{75} - 14 q^{79} + q^{81} + 8 q^{83} + 12 q^{85} + 10 q^{87} + 19 q^{89} + 35 q^{93} - 18 q^{95} + 30 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 7x^{4} + 2x^{3} + 38x^{2} - 12x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 7\nu^{4} + 49\nu^{3} - 38\nu^{2} + 12\nu - 84 ) / 254 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -7\nu^{5} + 49\nu^{4} - 89\nu^{3} + 266\nu^{2} - 84\nu + 1096 ) / 254 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 21\nu^{5} - 20\nu^{4} + 140\nu^{3} + 91\nu^{2} + 760\nu + 14 ) / 254 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -85\nu^{5} + 87\nu^{4} - 609\nu^{3} - 72\nu^{2} - 3306\nu + 1044 ) / 254 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 4\beta_{4} + \beta_{2} + \beta _1 - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 7\beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -7\beta_{5} - 26\beta_{4} + 7\beta_{3} - 11\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -11\beta_{5} - 30\beta_{4} - 51\beta_{2} - 51\beta _1 + 30 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
177.1
−1.08870 + 1.88569i
0.160819 0.278546i
1.42789 2.47317i
−1.08870 1.88569i
0.160819 + 0.278546i
1.42789 + 2.47317i
0 −1.08870 1.88569i 0 0.370556 0.641823i 0 0 0 −0.870556 + 1.50785i 0
177.2 0 0.160819 + 0.278546i 0 −1.94827 + 3.37451i 0 0 0 1.44827 2.50849i 0
177.3 0 1.42789 + 2.47317i 0 2.07772 3.59871i 0 0 0 −2.57772 + 4.46474i 0
1145.1 0 −1.08870 + 1.88569i 0 0.370556 + 0.641823i 0 0 0 −0.870556 1.50785i 0
1145.2 0 0.160819 0.278546i 0 −1.94827 3.37451i 0 0 0 1.44827 + 2.50849i 0
1145.3 0 1.42789 2.47317i 0 2.07772 + 3.59871i 0 0 0 −2.57772 4.46474i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 177.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.i.m 6
7.b odd 2 1 2156.2.i.k 6
7.c even 3 1 308.2.a.c 3
7.c even 3 1 inner 2156.2.i.m 6
7.d odd 6 1 2156.2.a.j 3
7.d odd 6 1 2156.2.i.k 6
21.h odd 6 1 2772.2.a.s 3
28.f even 6 1 8624.2.a.cj 3
28.g odd 6 1 1232.2.a.r 3
35.j even 6 1 7700.2.a.y 3
35.l odd 12 2 7700.2.e.p 6
56.k odd 6 1 4928.2.a.bx 3
56.p even 6 1 4928.2.a.ca 3
77.h odd 6 1 3388.2.a.o 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.2.a.c 3 7.c even 3 1
1232.2.a.r 3 28.g odd 6 1
2156.2.a.j 3 7.d odd 6 1
2156.2.i.k 6 7.b odd 2 1
2156.2.i.k 6 7.d odd 6 1
2156.2.i.m 6 1.a even 1 1 trivial
2156.2.i.m 6 7.c even 3 1 inner
2772.2.a.s 3 21.h odd 6 1
3388.2.a.o 3 77.h odd 6 1
4928.2.a.bx 3 56.k odd 6 1
4928.2.a.ca 3 56.p even 6 1
7700.2.a.y 3 35.j even 6 1
7700.2.e.p 6 35.l odd 12 2
8624.2.a.cj 3 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2156, [\chi])\):

\( T_{3}^{6} - T_{3}^{5} + 7T_{3}^{4} + 2T_{3}^{3} + 38T_{3}^{2} - 12T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{6} - T_{5}^{5} + 17T_{5}^{4} - 8T_{5}^{3} + 268T_{5}^{2} - 192T_{5} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + 7 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{6} - T^{5} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$13$ \( (T^{3} - 12 T^{2} + 34 T + 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots + 24336 \) Copy content Toggle raw display
$19$ \( T^{6} - 2 T^{5} + \cdots + 256 \) Copy content Toggle raw display
$23$ \( T^{6} - 7 T^{5} + \cdots + 5184 \) Copy content Toggle raw display
$29$ \( (T^{3} - 6 T^{2} - 44 T - 24)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} - 9 T^{5} + \cdots + 21316 \) Copy content Toggle raw display
$37$ \( T^{6} + 7 T^{5} + \cdots + 1024 \) Copy content Toggle raw display
$41$ \( (T^{3} + 2 T^{2} + \cdots - 156)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + 4 T^{2} - 20 T - 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 4 T^{5} + \cdots + 9216 \) Copy content Toggle raw display
$53$ \( T^{6} + 2 T^{5} + \cdots + 9216 \) Copy content Toggle raw display
$59$ \( T^{6} - 23 T^{5} + \cdots + 161604 \) Copy content Toggle raw display
$61$ \( T^{6} + 14 T^{5} + \cdots + 839056 \) Copy content Toggle raw display
$67$ \( T^{6} - 5 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( (T^{3} + 5 T^{2} + \cdots + 312)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} - 14 T^{5} + \cdots + 59536 \) Copy content Toggle raw display
$79$ \( T^{6} + 14 T^{5} + \cdots + 876096 \) Copy content Toggle raw display
$83$ \( (T^{3} - 4 T^{2} + \cdots + 1248)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 19 T^{5} + \cdots + 1648656 \) Copy content Toggle raw display
$97$ \( (T^{3} - 15 T^{2} + 16 T - 4)^{2} \) Copy content Toggle raw display
show more
show less