Properties

Label 2156.2.i.f.177.1
Level $2156$
Weight $2$
Character 2156.177
Analytic conductor $17.216$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(177,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.1
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2156.177
Dual form 2156.2.i.f.1145.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 2.44949i) q^{3} +(-0.707107 + 1.22474i) q^{5} +(-2.50000 + 4.33013i) q^{9} +O(q^{10})\) \(q+(-1.41421 - 2.44949i) q^{3} +(-0.707107 + 1.22474i) q^{5} +(-2.50000 + 4.33013i) q^{9} +(0.500000 + 0.866025i) q^{11} -1.41421 q^{13} +4.00000 q^{15} +(-3.53553 - 6.12372i) q^{17} +(-1.41421 + 2.44949i) q^{19} +(-2.00000 + 3.46410i) q^{23} +(1.50000 + 2.59808i) q^{25} +5.65685 q^{27} +(2.82843 + 4.89898i) q^{31} +(1.41421 - 2.44949i) q^{33} +(4.00000 - 6.92820i) q^{37} +(2.00000 + 3.46410i) q^{39} +9.89949 q^{41} +4.00000 q^{43} +(-3.53553 - 6.12372i) q^{45} +(-10.0000 + 17.3205i) q^{51} +(3.00000 + 5.19615i) q^{53} -1.41421 q^{55} +8.00000 q^{57} +(-4.24264 - 7.34847i) q^{59} +(0.707107 - 1.22474i) q^{61} +(1.00000 - 1.73205i) q^{65} +(4.00000 + 6.92820i) q^{67} +11.3137 q^{69} +8.00000 q^{71} +(0.707107 + 1.22474i) q^{73} +(4.24264 - 7.34847i) q^{75} +(-8.00000 + 13.8564i) q^{79} +(-0.500000 - 0.866025i) q^{81} -2.82843 q^{83} +10.0000 q^{85} +(7.77817 - 13.4722i) q^{89} +(8.00000 - 13.8564i) q^{93} +(-2.00000 - 3.46410i) q^{95} +9.89949 q^{97} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 10 q^{9} + 2 q^{11} + 16 q^{15} - 8 q^{23} + 6 q^{25} + 16 q^{37} + 8 q^{39} + 16 q^{43} - 40 q^{51} + 12 q^{53} + 32 q^{57} + 4 q^{65} + 16 q^{67} + 32 q^{71} - 32 q^{79} - 2 q^{81} + 40 q^{85} + 32 q^{93} - 8 q^{95} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 2.44949i −0.816497 1.41421i −0.908248 0.418432i \(-0.862580\pi\)
0.0917517 0.995782i \(-0.470753\pi\)
\(4\) 0 0
\(5\) −0.707107 + 1.22474i −0.316228 + 0.547723i −0.979698 0.200480i \(-0.935750\pi\)
0.663470 + 0.748203i \(0.269083\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.50000 + 4.33013i −0.833333 + 1.44338i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 0 0
\(13\) −1.41421 −0.392232 −0.196116 0.980581i \(-0.562833\pi\)
−0.196116 + 0.980581i \(0.562833\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 0 0
\(17\) −3.53553 6.12372i −0.857493 1.48522i −0.874313 0.485363i \(-0.838688\pi\)
0.0168199 0.999859i \(-0.494646\pi\)
\(18\) 0 0
\(19\) −1.41421 + 2.44949i −0.324443 + 0.561951i −0.981399 0.191977i \(-0.938510\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 1.50000 + 2.59808i 0.300000 + 0.519615i
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 2.82843 + 4.89898i 0.508001 + 0.879883i 0.999957 + 0.00926296i \(0.00294853\pi\)
−0.491957 + 0.870620i \(0.663718\pi\)
\(32\) 0 0
\(33\) 1.41421 2.44949i 0.246183 0.426401i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0 0
\(39\) 2.00000 + 3.46410i 0.320256 + 0.554700i
\(40\) 0 0
\(41\) 9.89949 1.54604 0.773021 0.634381i \(-0.218745\pi\)
0.773021 + 0.634381i \(0.218745\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −3.53553 6.12372i −0.527046 0.912871i
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −10.0000 + 17.3205i −1.40028 + 2.42536i
\(52\) 0 0
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) −1.41421 −0.190693
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) −4.24264 7.34847i −0.552345 0.956689i −0.998105 0.0615367i \(-0.980400\pi\)
0.445760 0.895152i \(-0.352933\pi\)
\(60\) 0 0
\(61\) 0.707107 1.22474i 0.0905357 0.156813i −0.817201 0.576353i \(-0.804475\pi\)
0.907737 + 0.419540i \(0.137809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 0 0
\(67\) 4.00000 + 6.92820i 0.488678 + 0.846415i 0.999915 0.0130248i \(-0.00414604\pi\)
−0.511237 + 0.859440i \(0.670813\pi\)
\(68\) 0 0
\(69\) 11.3137 1.36201
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 0.707107 + 1.22474i 0.0827606 + 0.143346i 0.904435 0.426612i \(-0.140293\pi\)
−0.821674 + 0.569958i \(0.806960\pi\)
\(74\) 0 0
\(75\) 4.24264 7.34847i 0.489898 0.848528i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 + 13.8564i −0.900070 + 1.55897i −0.0726692 + 0.997356i \(0.523152\pi\)
−0.827401 + 0.561611i \(0.810182\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −2.82843 −0.310460 −0.155230 0.987878i \(-0.549612\pi\)
−0.155230 + 0.987878i \(0.549612\pi\)
\(84\) 0 0
\(85\) 10.0000 1.08465
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.77817 13.4722i 0.824485 1.42805i −0.0778275 0.996967i \(-0.524798\pi\)
0.902312 0.431083i \(-0.141868\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 13.8564i 0.829561 1.43684i
\(94\) 0 0
\(95\) −2.00000 3.46410i −0.205196 0.355409i
\(96\) 0 0
\(97\) 9.89949 1.00514 0.502571 0.864536i \(-0.332388\pi\)
0.502571 + 0.864536i \(0.332388\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 9.19239 + 15.9217i 0.914677 + 1.58427i 0.807374 + 0.590040i \(0.200888\pi\)
0.107303 + 0.994226i \(0.465778\pi\)
\(102\) 0 0
\(103\) 8.48528 14.6969i 0.836080 1.44813i −0.0570688 0.998370i \(-0.518175\pi\)
0.893148 0.449762i \(-0.148491\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 6.92820i 0.386695 0.669775i −0.605308 0.795991i \(-0.706950\pi\)
0.992003 + 0.126217i \(0.0402834\pi\)
\(108\) 0 0
\(109\) −8.00000 13.8564i −0.766261 1.32720i −0.939577 0.342337i \(-0.888782\pi\)
0.173316 0.984866i \(-0.444552\pi\)
\(110\) 0 0
\(111\) −22.6274 −2.14770
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −2.82843 4.89898i −0.263752 0.456832i
\(116\) 0 0
\(117\) 3.53553 6.12372i 0.326860 0.566139i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −14.0000 24.2487i −1.26234 2.18643i
\(124\) 0 0
\(125\) −11.3137 −1.01193
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) −5.65685 9.79796i −0.498058 0.862662i
\(130\) 0 0
\(131\) −1.41421 + 2.44949i −0.123560 + 0.214013i −0.921169 0.389162i \(-0.872765\pi\)
0.797609 + 0.603175i \(0.206098\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.00000 + 6.92820i −0.344265 + 0.596285i
\(136\) 0 0
\(137\) −8.00000 13.8564i −0.683486 1.18383i −0.973910 0.226935i \(-0.927130\pi\)
0.290424 0.956898i \(-0.406204\pi\)
\(138\) 0 0
\(139\) −19.7990 −1.67933 −0.839664 0.543106i \(-0.817248\pi\)
−0.839664 + 0.543106i \(0.817248\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.707107 1.22474i −0.0591312 0.102418i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.0000 19.0526i 0.901155 1.56085i 0.0751583 0.997172i \(-0.476054\pi\)
0.825997 0.563675i \(-0.190613\pi\)
\(150\) 0 0
\(151\) −2.00000 3.46410i −0.162758 0.281905i 0.773099 0.634285i \(-0.218706\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 35.3553 2.85831
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 7.77817 + 13.4722i 0.620766 + 1.07520i 0.989343 + 0.145601i \(0.0465116\pi\)
−0.368577 + 0.929597i \(0.620155\pi\)
\(158\) 0 0
\(159\) 8.48528 14.6969i 0.672927 1.16554i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 3.46410i 0.156652 0.271329i −0.777007 0.629492i \(-0.783263\pi\)
0.933659 + 0.358162i \(0.116597\pi\)
\(164\) 0 0
\(165\) 2.00000 + 3.46410i 0.155700 + 0.269680i
\(166\) 0 0
\(167\) 5.65685 0.437741 0.218870 0.975754i \(-0.429763\pi\)
0.218870 + 0.975754i \(0.429763\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) −7.07107 12.2474i −0.540738 0.936586i
\(172\) 0 0
\(173\) −0.707107 + 1.22474i −0.0537603 + 0.0931156i −0.891653 0.452719i \(-0.850454\pi\)
0.837893 + 0.545835i \(0.183787\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 + 20.7846i −0.901975 + 1.56227i
\(178\) 0 0
\(179\) 8.00000 + 13.8564i 0.597948 + 1.03568i 0.993124 + 0.117071i \(0.0373504\pi\)
−0.395175 + 0.918606i \(0.629316\pi\)
\(180\) 0 0
\(181\) 12.7279 0.946059 0.473029 0.881047i \(-0.343160\pi\)
0.473029 + 0.881047i \(0.343160\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) 5.65685 + 9.79796i 0.415900 + 0.720360i
\(186\) 0 0
\(187\) 3.53553 6.12372i 0.258544 0.447811i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −3.00000 5.19615i −0.215945 0.374027i 0.737620 0.675216i \(-0.235950\pi\)
−0.953564 + 0.301189i \(0.902616\pi\)
\(194\) 0 0
\(195\) −5.65685 −0.405096
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 8.48528 + 14.6969i 0.601506 + 1.04184i 0.992593 + 0.121485i \(0.0387656\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(200\) 0 0
\(201\) 11.3137 19.5959i 0.798007 1.38219i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.00000 + 12.1244i −0.488901 + 0.846802i
\(206\) 0 0
\(207\) −10.0000 17.3205i −0.695048 1.20386i
\(208\) 0 0
\(209\) −2.82843 −0.195646
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) −11.3137 19.5959i −0.775203 1.34269i
\(214\) 0 0
\(215\) −2.82843 + 4.89898i −0.192897 + 0.334108i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 3.46410i 0.135147 0.234082i
\(220\) 0 0
\(221\) 5.00000 + 8.66025i 0.336336 + 0.582552i
\(222\) 0 0
\(223\) −11.3137 −0.757622 −0.378811 0.925474i \(-0.623667\pi\)
−0.378811 + 0.925474i \(0.623667\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 1.41421 + 2.44949i 0.0938647 + 0.162578i 0.909134 0.416503i \(-0.136745\pi\)
−0.815270 + 0.579082i \(0.803411\pi\)
\(228\) 0 0
\(229\) −6.36396 + 11.0227i −0.420542 + 0.728401i −0.995993 0.0894361i \(-0.971494\pi\)
0.575450 + 0.817837i \(0.304827\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 20.7846i 0.786146 1.36165i −0.142166 0.989843i \(-0.545407\pi\)
0.928312 0.371802i \(-0.121260\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 45.2548 2.93962
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 13.4350 + 23.2702i 0.865426 + 1.49896i 0.866623 + 0.498963i \(0.166286\pi\)
−0.00119700 + 0.999999i \(0.500381\pi\)
\(242\) 0 0
\(243\) 7.07107 12.2474i 0.453609 0.785674i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000 3.46410i 0.127257 0.220416i
\(248\) 0 0
\(249\) 4.00000 + 6.92820i 0.253490 + 0.439057i
\(250\) 0 0
\(251\) 14.1421 0.892644 0.446322 0.894873i \(-0.352734\pi\)
0.446322 + 0.894873i \(0.352734\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) −14.1421 24.4949i −0.885615 1.53393i
\(256\) 0 0
\(257\) 0.707107 1.22474i 0.0441081 0.0763975i −0.843129 0.537712i \(-0.819289\pi\)
0.887237 + 0.461315i \(0.152622\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) −8.48528 −0.521247
\(266\) 0 0
\(267\) −44.0000 −2.69276
\(268\) 0 0
\(269\) 3.53553 + 6.12372i 0.215565 + 0.373370i 0.953447 0.301560i \(-0.0975073\pi\)
−0.737882 + 0.674930i \(0.764174\pi\)
\(270\) 0 0
\(271\) −8.48528 + 14.6969i −0.515444 + 0.892775i 0.484395 + 0.874849i \(0.339040\pi\)
−0.999839 + 0.0179261i \(0.994294\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.50000 + 2.59808i −0.0904534 + 0.156670i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 0 0
\(279\) −28.2843 −1.69334
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) −4.24264 7.34847i −0.252199 0.436821i 0.711932 0.702248i \(-0.247820\pi\)
−0.964131 + 0.265427i \(0.914487\pi\)
\(284\) 0 0
\(285\) −5.65685 + 9.79796i −0.335083 + 0.580381i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.5000 + 28.5788i −0.970588 + 1.68111i
\(290\) 0 0
\(291\) −14.0000 24.2487i −0.820695 1.42148i
\(292\) 0 0
\(293\) −29.6985 −1.73500 −0.867502 0.497434i \(-0.834276\pi\)
−0.867502 + 0.497434i \(0.834276\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 2.82843 + 4.89898i 0.164122 + 0.284268i
\(298\) 0 0
\(299\) 2.82843 4.89898i 0.163572 0.283315i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 26.0000 45.0333i 1.49366 2.58710i
\(304\) 0 0
\(305\) 1.00000 + 1.73205i 0.0572598 + 0.0991769i
\(306\) 0 0
\(307\) 14.1421 0.807134 0.403567 0.914950i \(-0.367770\pi\)
0.403567 + 0.914950i \(0.367770\pi\)
\(308\) 0 0
\(309\) −48.0000 −2.73062
\(310\) 0 0
\(311\) 2.82843 + 4.89898i 0.160385 + 0.277796i 0.935007 0.354629i \(-0.115393\pi\)
−0.774622 + 0.632425i \(0.782060\pi\)
\(312\) 0 0
\(313\) −13.4350 + 23.2702i −0.759393 + 1.31531i 0.183768 + 0.982970i \(0.441171\pi\)
−0.943161 + 0.332337i \(0.892163\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 1.73205i 0.0561656 0.0972817i −0.836576 0.547852i \(-0.815446\pi\)
0.892741 + 0.450570i \(0.148779\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −22.6274 −1.26294
\(322\) 0 0
\(323\) 20.0000 1.11283
\(324\) 0 0
\(325\) −2.12132 3.67423i −0.117670 0.203810i
\(326\) 0 0
\(327\) −22.6274 + 39.1918i −1.25130 + 2.16731i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.0000 + 24.2487i −0.769510 + 1.33283i 0.168320 + 0.985732i \(0.446166\pi\)
−0.937829 + 0.347097i \(0.887167\pi\)
\(332\) 0 0
\(333\) 20.0000 + 34.6410i 1.09599 + 1.89832i
\(334\) 0 0
\(335\) −11.3137 −0.618134
\(336\) 0 0
\(337\) 16.0000 0.871576 0.435788 0.900049i \(-0.356470\pi\)
0.435788 + 0.900049i \(0.356470\pi\)
\(338\) 0 0
\(339\) −8.48528 14.6969i −0.460857 0.798228i
\(340\) 0 0
\(341\) −2.82843 + 4.89898i −0.153168 + 0.265295i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.00000 + 13.8564i −0.430706 + 0.746004i
\(346\) 0 0
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) −9.89949 −0.529908 −0.264954 0.964261i \(-0.585357\pi\)
−0.264954 + 0.964261i \(0.585357\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) −4.94975 8.57321i −0.263448 0.456306i 0.703707 0.710490i \(-0.251527\pi\)
−0.967156 + 0.254184i \(0.918193\pi\)
\(354\) 0 0
\(355\) −5.65685 + 9.79796i −0.300235 + 0.520022i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) 5.50000 + 9.52628i 0.289474 + 0.501383i
\(362\) 0 0
\(363\) 2.82843 0.148454
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) 16.9706 + 29.3939i 0.885856 + 1.53435i 0.844729 + 0.535194i \(0.179761\pi\)
0.0411270 + 0.999154i \(0.486905\pi\)
\(368\) 0 0
\(369\) −24.7487 + 42.8661i −1.28837 + 2.23152i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0000 32.9090i 0.983783 1.70396i 0.336557 0.941663i \(-0.390737\pi\)
0.647225 0.762299i \(-0.275929\pi\)
\(374\) 0 0
\(375\) 16.0000 + 27.7128i 0.826236 + 1.43108i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 0 0
\(381\) −16.9706 29.3939i −0.869428 1.50589i
\(382\) 0 0
\(383\) −11.3137 + 19.5959i −0.578103 + 1.00130i 0.417593 + 0.908634i \(0.362874\pi\)
−0.995697 + 0.0926706i \(0.970460\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 + 17.3205i −0.508329 + 0.880451i
\(388\) 0 0
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) 0 0
\(391\) 28.2843 1.43040
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 0 0
\(395\) −11.3137 19.5959i −0.569254 0.985978i
\(396\) 0 0
\(397\) 3.53553 6.12372i 0.177443 0.307341i −0.763561 0.645736i \(-0.776551\pi\)
0.941004 + 0.338395i \(0.109884\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 20.7846i 0.599251 1.03793i −0.393680 0.919247i \(-0.628798\pi\)
0.992932 0.118686i \(-0.0378683\pi\)
\(402\) 0 0
\(403\) −4.00000 6.92820i −0.199254 0.345118i
\(404\) 0 0
\(405\) 1.41421 0.0702728
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) 12.0208 + 20.8207i 0.594391 + 1.02952i 0.993632 + 0.112670i \(0.0359402\pi\)
−0.399241 + 0.916846i \(0.630726\pi\)
\(410\) 0 0
\(411\) −22.6274 + 39.1918i −1.11613 + 1.93319i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.00000 3.46410i 0.0981761 0.170046i
\(416\) 0 0
\(417\) 28.0000 + 48.4974i 1.37117 + 2.37493i
\(418\) 0 0
\(419\) −25.4558 −1.24360 −0.621800 0.783176i \(-0.713598\pi\)
−0.621800 + 0.783176i \(0.713598\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.6066 18.3712i 0.514496 0.891133i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.00000 + 3.46410i −0.0965609 + 0.167248i
\(430\) 0 0
\(431\) −2.00000 3.46410i −0.0963366 0.166860i 0.813829 0.581104i \(-0.197379\pi\)
−0.910166 + 0.414244i \(0.864046\pi\)
\(432\) 0 0
\(433\) 12.7279 0.611665 0.305832 0.952085i \(-0.401065\pi\)
0.305832 + 0.952085i \(0.401065\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.65685 9.79796i −0.270604 0.468700i
\(438\) 0 0
\(439\) 8.48528 14.6969i 0.404980 0.701447i −0.589339 0.807886i \(-0.700612\pi\)
0.994319 + 0.106439i \(0.0339450\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 11.0000 + 19.0526i 0.521450 + 0.903178i
\(446\) 0 0
\(447\) −62.2254 −2.94316
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 4.94975 + 8.57321i 0.233075 + 0.403697i
\(452\) 0 0
\(453\) −5.65685 + 9.79796i −0.265782 + 0.460348i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.00000 + 12.1244i −0.327446 + 0.567153i −0.982004 0.188858i \(-0.939521\pi\)
0.654558 + 0.756012i \(0.272855\pi\)
\(458\) 0 0
\(459\) −20.0000 34.6410i −0.933520 1.61690i
\(460\) 0 0
\(461\) 24.0416 1.11973 0.559865 0.828584i \(-0.310853\pi\)
0.559865 + 0.828584i \(0.310853\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 11.3137 + 19.5959i 0.524661 + 0.908739i
\(466\) 0 0
\(467\) −4.24264 + 7.34847i −0.196326 + 0.340047i −0.947334 0.320246i \(-0.896234\pi\)
0.751008 + 0.660293i \(0.229568\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 22.0000 38.1051i 1.01371 1.75579i
\(472\) 0 0
\(473\) 2.00000 + 3.46410i 0.0919601 + 0.159280i
\(474\) 0 0
\(475\) −8.48528 −0.389331
\(476\) 0 0
\(477\) −30.0000 −1.37361
\(478\) 0 0
\(479\) 16.9706 + 29.3939i 0.775405 + 1.34304i 0.934567 + 0.355788i \(0.115787\pi\)
−0.159162 + 0.987252i \(0.550879\pi\)
\(480\) 0 0
\(481\) −5.65685 + 9.79796i −0.257930 + 0.446748i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.00000 + 12.1244i −0.317854 + 0.550539i
\(486\) 0 0
\(487\) 10.0000 + 17.3205i 0.453143 + 0.784867i 0.998579 0.0532853i \(-0.0169693\pi\)
−0.545436 + 0.838152i \(0.683636\pi\)
\(488\) 0 0
\(489\) −11.3137 −0.511624
\(490\) 0 0
\(491\) −32.0000 −1.44414 −0.722070 0.691820i \(-0.756809\pi\)
−0.722070 + 0.691820i \(0.756809\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 3.53553 6.12372i 0.158910 0.275241i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) 0 0
\(501\) −8.00000 13.8564i −0.357414 0.619059i
\(502\) 0 0
\(503\) −5.65685 −0.252227 −0.126113 0.992016i \(-0.540250\pi\)
−0.126113 + 0.992016i \(0.540250\pi\)
\(504\) 0 0
\(505\) −26.0000 −1.15698
\(506\) 0 0
\(507\) 15.5563 + 26.9444i 0.690882 + 1.19664i
\(508\) 0 0
\(509\) 14.8492 25.7196i 0.658181 1.14000i −0.322905 0.946431i \(-0.604659\pi\)
0.981086 0.193572i \(-0.0620072\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.00000 + 13.8564i −0.353209 + 0.611775i
\(514\) 0 0
\(515\) 12.0000 + 20.7846i 0.528783 + 0.915879i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 3.53553 + 6.12372i 0.154895 + 0.268285i 0.933021 0.359823i \(-0.117163\pi\)
−0.778126 + 0.628108i \(0.783830\pi\)
\(522\) 0 0
\(523\) −21.2132 + 36.7423i −0.927589 + 1.60663i −0.140244 + 0.990117i \(0.544789\pi\)
−0.787344 + 0.616514i \(0.788544\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 34.6410i 0.871214 1.50899i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 42.4264 1.84115
\(532\) 0 0
\(533\) −14.0000 −0.606407
\(534\) 0 0
\(535\) 5.65685 + 9.79796i 0.244567 + 0.423603i
\(536\) 0 0
\(537\) 22.6274 39.1918i 0.976445 1.69125i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 15.0000 25.9808i 0.644900 1.11700i −0.339424 0.940633i \(-0.610232\pi\)
0.984325 0.176367i \(-0.0564345\pi\)
\(542\) 0 0
\(543\) −18.0000 31.1769i −0.772454 1.33793i
\(544\) 0 0
\(545\) 22.6274 0.969252
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 3.53553 + 6.12372i 0.150893 + 0.261354i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 16.0000 27.7128i 0.679162 1.17634i
\(556\) 0 0
\(557\) 9.00000 + 15.5885i 0.381342 + 0.660504i 0.991254 0.131965i \(-0.0421286\pi\)
−0.609912 + 0.792469i \(0.708795\pi\)
\(558\) 0 0
\(559\) −5.65685 −0.239259
\(560\) 0 0
\(561\) −20.0000 −0.844401
\(562\) 0 0
\(563\) −18.3848 31.8434i −0.774826 1.34204i −0.934892 0.354932i \(-0.884504\pi\)
0.160066 0.987106i \(-0.448829\pi\)
\(564\) 0 0
\(565\) −4.24264 + 7.34847i −0.178489 + 0.309152i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) −22.0000 38.1051i −0.920671 1.59465i −0.798379 0.602155i \(-0.794309\pi\)
−0.122292 0.992494i \(-0.539025\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 10.6066 + 18.3712i 0.441559 + 0.764802i 0.997805 0.0662152i \(-0.0210924\pi\)
−0.556247 + 0.831017i \(0.687759\pi\)
\(578\) 0 0
\(579\) −8.48528 + 14.6969i −0.352636 + 0.610784i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) 0 0
\(585\) 5.00000 + 8.66025i 0.206725 + 0.358057i
\(586\) 0 0
\(587\) −14.1421 −0.583708 −0.291854 0.956463i \(-0.594272\pi\)
−0.291854 + 0.956463i \(0.594272\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) −8.48528 14.6969i −0.349038 0.604551i
\(592\) 0 0
\(593\) −3.53553 + 6.12372i −0.145187 + 0.251471i −0.929443 0.368967i \(-0.879712\pi\)
0.784256 + 0.620438i \(0.213045\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.0000 41.5692i 0.982255 1.70131i
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −35.3553 −1.44217 −0.721087 0.692844i \(-0.756357\pi\)
−0.721087 + 0.692844i \(0.756357\pi\)
\(602\) 0 0
\(603\) −40.0000 −1.62893
\(604\) 0 0
\(605\) −0.707107 1.22474i −0.0287480 0.0497930i
\(606\) 0 0
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −16.0000 27.7128i −0.646234 1.11931i −0.984015 0.178085i \(-0.943010\pi\)
0.337781 0.941225i \(-0.390324\pi\)
\(614\) 0 0
\(615\) 39.5980 1.59674
\(616\) 0 0
\(617\) −24.0000 −0.966204 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(618\) 0 0
\(619\) −4.24264 7.34847i −0.170526 0.295360i 0.768078 0.640357i \(-0.221213\pi\)
−0.938604 + 0.344997i \(0.887880\pi\)
\(620\) 0 0
\(621\) −11.3137 + 19.5959i −0.454003 + 0.786357i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) 0 0
\(627\) 4.00000 + 6.92820i 0.159745 + 0.276686i
\(628\) 0 0
\(629\) −56.5685 −2.25554
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) 11.3137 + 19.5959i 0.449680 + 0.778868i
\(634\) 0 0
\(635\) −8.48528 + 14.6969i −0.336728 + 0.583230i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −20.0000 + 34.6410i −0.791188 + 1.37038i
\(640\) 0 0
\(641\) 12.0000 + 20.7846i 0.473972 + 0.820943i 0.999556 0.0297987i \(-0.00948663\pi\)
−0.525584 + 0.850741i \(0.676153\pi\)
\(642\) 0 0
\(643\) 42.4264 1.67313 0.836567 0.547865i \(-0.184559\pi\)
0.836567 + 0.547865i \(0.184559\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) −14.1421 24.4949i −0.555985 0.962994i −0.997826 0.0659006i \(-0.979008\pi\)
0.441841 0.897093i \(-0.354325\pi\)
\(648\) 0 0
\(649\) 4.24264 7.34847i 0.166538 0.288453i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.0000 + 20.7846i −0.469596 + 0.813365i −0.999396 0.0347583i \(-0.988934\pi\)
0.529799 + 0.848123i \(0.322267\pi\)
\(654\) 0 0
\(655\) −2.00000 3.46410i −0.0781465 0.135354i
\(656\) 0 0
\(657\) −7.07107 −0.275869
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 10.6066 + 18.3712i 0.412549 + 0.714556i 0.995168 0.0981898i \(-0.0313052\pi\)
−0.582619 + 0.812746i \(0.697972\pi\)
\(662\) 0 0
\(663\) 14.1421 24.4949i 0.549235 0.951303i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 + 27.7128i 0.618596 + 1.07144i
\(670\) 0 0
\(671\) 1.41421 0.0545951
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) 8.48528 + 14.6969i 0.326599 + 0.565685i
\(676\) 0 0
\(677\) 24.7487 42.8661i 0.951171 1.64748i 0.208275 0.978070i \(-0.433215\pi\)
0.742896 0.669407i \(-0.233452\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.00000 6.92820i 0.153280 0.265489i
\(682\) 0 0
\(683\) −24.0000 41.5692i −0.918334 1.59060i −0.801945 0.597398i \(-0.796201\pi\)
−0.116390 0.993204i \(-0.537132\pi\)
\(684\) 0 0
\(685\) 22.6274 0.864549
\(686\) 0 0
\(687\) 36.0000 1.37349
\(688\) 0 0
\(689\) −4.24264 7.34847i −0.161632 0.279954i
\(690\) 0 0
\(691\) 1.41421 2.44949i 0.0537992 0.0931830i −0.837872 0.545867i \(-0.816200\pi\)
0.891671 + 0.452684i \(0.149534\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.0000 24.2487i 0.531050 0.919806i
\(696\) 0 0
\(697\) −35.0000 60.6218i −1.32572 2.29621i
\(698\) 0 0
\(699\) −67.8823 −2.56754
\(700\) 0 0
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) 0 0
\(703\) 11.3137 + 19.5959i 0.426705 + 0.739074i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.0000 + 34.6410i −0.751116 + 1.30097i 0.196167 + 0.980571i \(0.437151\pi\)
−0.947282 + 0.320400i \(0.896183\pi\)
\(710\) 0 0
\(711\) −40.0000 69.2820i −1.50012 2.59828i
\(712\) 0 0
\(713\) −22.6274 −0.847403
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 0 0
\(717\) −28.2843 48.9898i −1.05630 1.82956i
\(718\) 0 0
\(719\) 5.65685 9.79796i 0.210965 0.365402i −0.741052 0.671448i \(-0.765673\pi\)
0.952017 + 0.306046i \(0.0990060\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 38.0000 65.8179i 1.41324 2.44780i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −11.3137 −0.419602 −0.209801 0.977744i \(-0.567282\pi\)
−0.209801 + 0.977744i \(0.567282\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) −14.1421 24.4949i −0.523066 0.905977i
\(732\) 0 0
\(733\) 10.6066 18.3712i 0.391764 0.678555i −0.600919 0.799310i \(-0.705198\pi\)
0.992682 + 0.120756i \(0.0385317\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 + 6.92820i −0.147342 + 0.255204i
\(738\) 0 0
\(739\) −18.0000 31.1769i −0.662141 1.14686i −0.980052 0.198741i \(-0.936315\pi\)
0.317911 0.948120i \(-0.397019\pi\)
\(740\) 0 0
\(741\) −11.3137 −0.415619
\(742\) 0 0
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 0 0
\(745\) 15.5563 + 26.9444i 0.569941 + 0.987166i
\(746\) 0 0
\(747\) 7.07107 12.2474i 0.258717 0.448111i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 14.0000 24.2487i 0.510867 0.884848i −0.489053 0.872254i \(-0.662658\pi\)
0.999921 0.0125942i \(-0.00400897\pi\)
\(752\) 0 0
\(753\) −20.0000 34.6410i −0.728841 1.26239i
\(754\) 0 0
\(755\) 5.65685 0.205874
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) 5.65685 + 9.79796i 0.205331 + 0.355643i
\(760\) 0 0
\(761\) −6.36396 + 11.0227i −0.230693 + 0.399573i −0.958012 0.286727i \(-0.907433\pi\)
0.727319 + 0.686300i \(0.240766\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −25.0000 + 43.3013i −0.903877 + 1.56556i
\(766\) 0 0
\(767\) 6.00000 + 10.3923i 0.216647 + 0.375244i
\(768\) 0 0
\(769\) −4.24264 −0.152994 −0.0764968 0.997070i \(-0.524373\pi\)
−0.0764968 + 0.997070i \(0.524373\pi\)
\(770\) 0 0
\(771\) −4.00000 −0.144056
\(772\) 0 0
\(773\) 4.94975 + 8.57321i 0.178030 + 0.308357i 0.941206 0.337834i \(-0.109694\pi\)
−0.763176 + 0.646191i \(0.776361\pi\)
\(774\) 0 0
\(775\) −8.48528 + 14.6969i −0.304800 + 0.527930i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.0000 + 24.2487i −0.501602 + 0.868800i
\(780\) 0 0
\(781\) 4.00000 + 6.92820i 0.143131 + 0.247911i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) 4.24264 + 7.34847i 0.151234 + 0.261945i 0.931681 0.363277i \(-0.118342\pi\)
−0.780447 + 0.625221i \(0.785009\pi\)
\(788\) 0 0
\(789\) 33.9411 58.7878i 1.20834 2.09290i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 + 1.73205i −0.0355110 + 0.0615069i
\(794\) 0 0