Properties

Label 2156.2.i.f.1145.2
Level $2156$
Weight $2$
Character 2156.1145
Analytic conductor $17.216$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(177,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1145.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2156.1145
Dual form 2156.2.i.f.177.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 - 2.44949i) q^{3} +(0.707107 + 1.22474i) q^{5} +(-2.50000 - 4.33013i) q^{9} +O(q^{10})\) \(q+(1.41421 - 2.44949i) q^{3} +(0.707107 + 1.22474i) q^{5} +(-2.50000 - 4.33013i) q^{9} +(0.500000 - 0.866025i) q^{11} +1.41421 q^{13} +4.00000 q^{15} +(3.53553 - 6.12372i) q^{17} +(1.41421 + 2.44949i) q^{19} +(-2.00000 - 3.46410i) q^{23} +(1.50000 - 2.59808i) q^{25} -5.65685 q^{27} +(-2.82843 + 4.89898i) q^{31} +(-1.41421 - 2.44949i) q^{33} +(4.00000 + 6.92820i) q^{37} +(2.00000 - 3.46410i) q^{39} -9.89949 q^{41} +4.00000 q^{43} +(3.53553 - 6.12372i) q^{45} +(-10.0000 - 17.3205i) q^{51} +(3.00000 - 5.19615i) q^{53} +1.41421 q^{55} +8.00000 q^{57} +(4.24264 - 7.34847i) q^{59} +(-0.707107 - 1.22474i) q^{61} +(1.00000 + 1.73205i) q^{65} +(4.00000 - 6.92820i) q^{67} -11.3137 q^{69} +8.00000 q^{71} +(-0.707107 + 1.22474i) q^{73} +(-4.24264 - 7.34847i) q^{75} +(-8.00000 - 13.8564i) q^{79} +(-0.500000 + 0.866025i) q^{81} +2.82843 q^{83} +10.0000 q^{85} +(-7.77817 - 13.4722i) q^{89} +(8.00000 + 13.8564i) q^{93} +(-2.00000 + 3.46410i) q^{95} -9.89949 q^{97} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 10 q^{9} + 2 q^{11} + 16 q^{15} - 8 q^{23} + 6 q^{25} + 16 q^{37} + 8 q^{39} + 16 q^{43} - 40 q^{51} + 12 q^{53} + 32 q^{57} + 4 q^{65} + 16 q^{67} + 32 q^{71} - 32 q^{79} - 2 q^{81} + 40 q^{85} + 32 q^{93} - 8 q^{95} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 2.44949i 0.816497 1.41421i −0.0917517 0.995782i \(-0.529247\pi\)
0.908248 0.418432i \(-0.137420\pi\)
\(4\) 0 0
\(5\) 0.707107 + 1.22474i 0.316228 + 0.547723i 0.979698 0.200480i \(-0.0642503\pi\)
−0.663470 + 0.748203i \(0.730917\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.50000 4.33013i −0.833333 1.44338i
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0 0
\(13\) 1.41421 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) 0 0
\(15\) 4.00000 1.03280
\(16\) 0 0
\(17\) 3.53553 6.12372i 0.857493 1.48522i −0.0168199 0.999859i \(-0.505354\pi\)
0.874313 0.485363i \(-0.161312\pi\)
\(18\) 0 0
\(19\) 1.41421 + 2.44949i 0.324443 + 0.561951i 0.981399 0.191977i \(-0.0614899\pi\)
−0.656957 + 0.753928i \(0.728157\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) 1.50000 2.59808i 0.300000 0.519615i
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −2.82843 + 4.89898i −0.508001 + 0.879883i 0.491957 + 0.870620i \(0.336282\pi\)
−0.999957 + 0.00926296i \(0.997051\pi\)
\(32\) 0 0
\(33\) −1.41421 2.44949i −0.246183 0.426401i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 + 6.92820i 0.657596 + 1.13899i 0.981236 + 0.192809i \(0.0617599\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(38\) 0 0
\(39\) 2.00000 3.46410i 0.320256 0.554700i
\(40\) 0 0
\(41\) −9.89949 −1.54604 −0.773021 0.634381i \(-0.781255\pi\)
−0.773021 + 0.634381i \(0.781255\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 3.53553 6.12372i 0.527046 0.912871i
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −10.0000 17.3205i −1.40028 2.42536i
\(52\) 0 0
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) 1.41421 0.190693
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) 4.24264 7.34847i 0.552345 0.956689i −0.445760 0.895152i \(-0.647067\pi\)
0.998105 0.0615367i \(-0.0196001\pi\)
\(60\) 0 0
\(61\) −0.707107 1.22474i −0.0905357 0.156813i 0.817201 0.576353i \(-0.195525\pi\)
−0.907737 + 0.419540i \(0.862191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) 4.00000 6.92820i 0.488678 0.846415i −0.511237 0.859440i \(-0.670813\pi\)
0.999915 + 0.0130248i \(0.00414604\pi\)
\(68\) 0 0
\(69\) −11.3137 −1.36201
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −0.707107 + 1.22474i −0.0827606 + 0.143346i −0.904435 0.426612i \(-0.859707\pi\)
0.821674 + 0.569958i \(0.193040\pi\)
\(74\) 0 0
\(75\) −4.24264 7.34847i −0.489898 0.848528i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 13.8564i −0.900070 1.55897i −0.827401 0.561611i \(-0.810182\pi\)
−0.0726692 0.997356i \(-0.523152\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 2.82843 0.310460 0.155230 0.987878i \(-0.450388\pi\)
0.155230 + 0.987878i \(0.450388\pi\)
\(84\) 0 0
\(85\) 10.0000 1.08465
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.77817 13.4722i −0.824485 1.42805i −0.902312 0.431083i \(-0.858132\pi\)
0.0778275 0.996967i \(-0.475202\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 + 13.8564i 0.829561 + 1.43684i
\(94\) 0 0
\(95\) −2.00000 + 3.46410i −0.205196 + 0.355409i
\(96\) 0 0
\(97\) −9.89949 −1.00514 −0.502571 0.864536i \(-0.667612\pi\)
−0.502571 + 0.864536i \(0.667612\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) −9.19239 + 15.9217i −0.914677 + 1.58427i −0.107303 + 0.994226i \(0.534222\pi\)
−0.807374 + 0.590040i \(0.799112\pi\)
\(102\) 0 0
\(103\) −8.48528 14.6969i −0.836080 1.44813i −0.893148 0.449762i \(-0.851509\pi\)
0.0570688 0.998370i \(-0.481825\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000 + 6.92820i 0.386695 + 0.669775i 0.992003 0.126217i \(-0.0402834\pi\)
−0.605308 + 0.795991i \(0.706950\pi\)
\(108\) 0 0
\(109\) −8.00000 + 13.8564i −0.766261 + 1.32720i 0.173316 + 0.984866i \(0.444552\pi\)
−0.939577 + 0.342337i \(0.888782\pi\)
\(110\) 0 0
\(111\) 22.6274 2.14770
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 2.82843 4.89898i 0.263752 0.456832i
\(116\) 0 0
\(117\) −3.53553 6.12372i −0.326860 0.566139i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) −14.0000 + 24.2487i −1.26234 + 2.18643i
\(124\) 0 0
\(125\) 11.3137 1.01193
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 5.65685 9.79796i 0.498058 0.862662i
\(130\) 0 0
\(131\) 1.41421 + 2.44949i 0.123560 + 0.214013i 0.921169 0.389162i \(-0.127235\pi\)
−0.797609 + 0.603175i \(0.793902\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.00000 6.92820i −0.344265 0.596285i
\(136\) 0 0
\(137\) −8.00000 + 13.8564i −0.683486 + 1.18383i 0.290424 + 0.956898i \(0.406204\pi\)
−0.973910 + 0.226935i \(0.927130\pi\)
\(138\) 0 0
\(139\) 19.7990 1.67933 0.839664 0.543106i \(-0.182752\pi\)
0.839664 + 0.543106i \(0.182752\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.707107 1.22474i 0.0591312 0.102418i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.0000 + 19.0526i 0.901155 + 1.56085i 0.825997 + 0.563675i \(0.190613\pi\)
0.0751583 + 0.997172i \(0.476054\pi\)
\(150\) 0 0
\(151\) −2.00000 + 3.46410i −0.162758 + 0.281905i −0.935857 0.352381i \(-0.885372\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 0 0
\(153\) −35.3553 −2.85831
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −7.77817 + 13.4722i −0.620766 + 1.07520i 0.368577 + 0.929597i \(0.379845\pi\)
−0.989343 + 0.145601i \(0.953488\pi\)
\(158\) 0 0
\(159\) −8.48528 14.6969i −0.672927 1.16554i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) 0 0
\(165\) 2.00000 3.46410i 0.155700 0.269680i
\(166\) 0 0
\(167\) −5.65685 −0.437741 −0.218870 0.975754i \(-0.570237\pi\)
−0.218870 + 0.975754i \(0.570237\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 7.07107 12.2474i 0.540738 0.936586i
\(172\) 0 0
\(173\) 0.707107 + 1.22474i 0.0537603 + 0.0931156i 0.891653 0.452719i \(-0.149546\pi\)
−0.837893 + 0.545835i \(0.816213\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 20.7846i −0.901975 1.56227i
\(178\) 0 0
\(179\) 8.00000 13.8564i 0.597948 1.03568i −0.395175 0.918606i \(-0.629316\pi\)
0.993124 0.117071i \(-0.0373504\pi\)
\(180\) 0 0
\(181\) −12.7279 −0.946059 −0.473029 0.881047i \(-0.656840\pi\)
−0.473029 + 0.881047i \(0.656840\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −5.65685 + 9.79796i −0.415900 + 0.720360i
\(186\) 0 0
\(187\) −3.53553 6.12372i −0.258544 0.447811i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −3.00000 + 5.19615i −0.215945 + 0.374027i −0.953564 0.301189i \(-0.902616\pi\)
0.737620 + 0.675216i \(0.235950\pi\)
\(194\) 0 0
\(195\) 5.65685 0.405096
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −8.48528 + 14.6969i −0.601506 + 1.04184i 0.391088 + 0.920353i \(0.372099\pi\)
−0.992593 + 0.121485i \(0.961234\pi\)
\(200\) 0 0
\(201\) −11.3137 19.5959i −0.798007 1.38219i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.00000 12.1244i −0.488901 0.846802i
\(206\) 0 0
\(207\) −10.0000 + 17.3205i −0.695048 + 1.20386i
\(208\) 0 0
\(209\) 2.82843 0.195646
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 0 0
\(213\) 11.3137 19.5959i 0.775203 1.34269i
\(214\) 0 0
\(215\) 2.82843 + 4.89898i 0.192897 + 0.334108i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 + 3.46410i 0.135147 + 0.234082i
\(220\) 0 0
\(221\) 5.00000 8.66025i 0.336336 0.582552i
\(222\) 0 0
\(223\) 11.3137 0.757622 0.378811 0.925474i \(-0.376333\pi\)
0.378811 + 0.925474i \(0.376333\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) −1.41421 + 2.44949i −0.0938647 + 0.162578i −0.909134 0.416503i \(-0.863255\pi\)
0.815270 + 0.579082i \(0.196589\pi\)
\(228\) 0 0
\(229\) 6.36396 + 11.0227i 0.420542 + 0.728401i 0.995993 0.0894361i \(-0.0285065\pi\)
−0.575450 + 0.817837i \(0.695173\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −45.2548 −2.93962
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −13.4350 + 23.2702i −0.865426 + 1.49896i 0.00119700 + 0.999999i \(0.499619\pi\)
−0.866623 + 0.498963i \(0.833714\pi\)
\(242\) 0 0
\(243\) −7.07107 12.2474i −0.453609 0.785674i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000 + 3.46410i 0.127257 + 0.220416i
\(248\) 0 0
\(249\) 4.00000 6.92820i 0.253490 0.439057i
\(250\) 0 0
\(251\) −14.1421 −0.892644 −0.446322 0.894873i \(-0.647266\pi\)
−0.446322 + 0.894873i \(0.647266\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 14.1421 24.4949i 0.885615 1.53393i
\(256\) 0 0
\(257\) −0.707107 1.22474i −0.0441081 0.0763975i 0.843129 0.537712i \(-0.180711\pi\)
−0.887237 + 0.461315i \(0.847378\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 20.7846i 0.739952 1.28163i −0.212565 0.977147i \(-0.568182\pi\)
0.952517 0.304487i \(-0.0984850\pi\)
\(264\) 0 0
\(265\) 8.48528 0.521247
\(266\) 0 0
\(267\) −44.0000 −2.69276
\(268\) 0 0
\(269\) −3.53553 + 6.12372i −0.215565 + 0.373370i −0.953447 0.301560i \(-0.902493\pi\)
0.737882 + 0.674930i \(0.235826\pi\)
\(270\) 0 0
\(271\) 8.48528 + 14.6969i 0.515444 + 0.892775i 0.999839 + 0.0179261i \(0.00570637\pi\)
−0.484395 + 0.874849i \(0.660960\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 28.2843 1.69334
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 4.24264 7.34847i 0.252199 0.436821i −0.711932 0.702248i \(-0.752180\pi\)
0.964131 + 0.265427i \(0.0855130\pi\)
\(284\) 0 0
\(285\) 5.65685 + 9.79796i 0.335083 + 0.580381i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.5000 28.5788i −0.970588 1.68111i
\(290\) 0 0
\(291\) −14.0000 + 24.2487i −0.820695 + 1.42148i
\(292\) 0 0
\(293\) 29.6985 1.73500 0.867502 0.497434i \(-0.165724\pi\)
0.867502 + 0.497434i \(0.165724\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) −2.82843 + 4.89898i −0.164122 + 0.284268i
\(298\) 0 0
\(299\) −2.82843 4.89898i −0.163572 0.283315i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 26.0000 + 45.0333i 1.49366 + 2.58710i
\(304\) 0 0
\(305\) 1.00000 1.73205i 0.0572598 0.0991769i
\(306\) 0 0
\(307\) −14.1421 −0.807134 −0.403567 0.914950i \(-0.632230\pi\)
−0.403567 + 0.914950i \(0.632230\pi\)
\(308\) 0 0
\(309\) −48.0000 −2.73062
\(310\) 0 0
\(311\) −2.82843 + 4.89898i −0.160385 + 0.277796i −0.935007 0.354629i \(-0.884607\pi\)
0.774622 + 0.632425i \(0.217940\pi\)
\(312\) 0 0
\(313\) 13.4350 + 23.2702i 0.759393 + 1.31531i 0.943161 + 0.332337i \(0.107837\pi\)
−0.183768 + 0.982970i \(0.558829\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 + 1.73205i 0.0561656 + 0.0972817i 0.892741 0.450570i \(-0.148779\pi\)
−0.836576 + 0.547852i \(0.815446\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 22.6274 1.26294
\(322\) 0 0
\(323\) 20.0000 1.11283
\(324\) 0 0
\(325\) 2.12132 3.67423i 0.117670 0.203810i
\(326\) 0 0
\(327\) 22.6274 + 39.1918i 1.25130 + 2.16731i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.0000 24.2487i −0.769510 1.33283i −0.937829 0.347097i \(-0.887167\pi\)
0.168320 0.985732i \(-0.446166\pi\)
\(332\) 0 0
\(333\) 20.0000 34.6410i 1.09599 1.89832i
\(334\) 0 0
\(335\) 11.3137 0.618134
\(336\) 0 0
\(337\) 16.0000 0.871576 0.435788 0.900049i \(-0.356470\pi\)
0.435788 + 0.900049i \(0.356470\pi\)
\(338\) 0 0
\(339\) 8.48528 14.6969i 0.460857 0.798228i
\(340\) 0 0
\(341\) 2.82843 + 4.89898i 0.153168 + 0.265295i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.00000 13.8564i −0.430706 0.746004i
\(346\) 0 0
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) 9.89949 0.529908 0.264954 0.964261i \(-0.414643\pi\)
0.264954 + 0.964261i \(0.414643\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) 4.94975 8.57321i 0.263448 0.456306i −0.703707 0.710490i \(-0.748473\pi\)
0.967156 + 0.254184i \(0.0818068\pi\)
\(354\) 0 0
\(355\) 5.65685 + 9.79796i 0.300235 + 0.520022i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 17.3205i −0.527780 0.914141i −0.999476 0.0323801i \(-0.989691\pi\)
0.471696 0.881761i \(-0.343642\pi\)
\(360\) 0 0
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) 0 0
\(363\) −2.82843 −0.148454
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −16.9706 + 29.3939i −0.885856 + 1.53435i −0.0411270 + 0.999154i \(0.513095\pi\)
−0.844729 + 0.535194i \(0.820239\pi\)
\(368\) 0 0
\(369\) 24.7487 + 42.8661i 1.28837 + 2.23152i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0000 + 32.9090i 0.983783 + 1.70396i 0.647225 + 0.762299i \(0.275929\pi\)
0.336557 + 0.941663i \(0.390737\pi\)
\(374\) 0 0
\(375\) 16.0000 27.7128i 0.826236 1.43108i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 0 0
\(381\) 16.9706 29.3939i 0.869428 1.50589i
\(382\) 0 0
\(383\) 11.3137 + 19.5959i 0.578103 + 1.00130i 0.995697 + 0.0926706i \(0.0295404\pi\)
−0.417593 + 0.908634i \(0.637126\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 17.3205i −0.508329 0.880451i
\(388\) 0 0
\(389\) −4.00000 + 6.92820i −0.202808 + 0.351274i −0.949432 0.313972i \(-0.898340\pi\)
0.746624 + 0.665246i \(0.231673\pi\)
\(390\) 0 0
\(391\) −28.2843 −1.43040
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 0 0
\(395\) 11.3137 19.5959i 0.569254 0.985978i
\(396\) 0 0
\(397\) −3.53553 6.12372i −0.177443 0.307341i 0.763561 0.645736i \(-0.223449\pi\)
−0.941004 + 0.338395i \(0.890116\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) −4.00000 + 6.92820i −0.199254 + 0.345118i
\(404\) 0 0
\(405\) −1.41421 −0.0702728
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −12.0208 + 20.8207i −0.594391 + 1.02952i 0.399241 + 0.916846i \(0.369274\pi\)
−0.993632 + 0.112670i \(0.964060\pi\)
\(410\) 0 0
\(411\) 22.6274 + 39.1918i 1.11613 + 1.93319i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.00000 + 3.46410i 0.0981761 + 0.170046i
\(416\) 0 0
\(417\) 28.0000 48.4974i 1.37117 2.37493i
\(418\) 0 0
\(419\) 25.4558 1.24360 0.621800 0.783176i \(-0.286402\pi\)
0.621800 + 0.783176i \(0.286402\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.6066 18.3712i −0.514496 0.891133i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.00000 3.46410i −0.0965609 0.167248i
\(430\) 0 0
\(431\) −2.00000 + 3.46410i −0.0963366 + 0.166860i −0.910166 0.414244i \(-0.864046\pi\)
0.813829 + 0.581104i \(0.197379\pi\)
\(432\) 0 0
\(433\) −12.7279 −0.611665 −0.305832 0.952085i \(-0.598935\pi\)
−0.305832 + 0.952085i \(0.598935\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.65685 9.79796i 0.270604 0.468700i
\(438\) 0 0
\(439\) −8.48528 14.6969i −0.404980 0.701447i 0.589339 0.807886i \(-0.299388\pi\)
−0.994319 + 0.106439i \(0.966055\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 11.0000 19.0526i 0.521450 0.903178i
\(446\) 0 0
\(447\) 62.2254 2.94316
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −4.94975 + 8.57321i −0.233075 + 0.403697i
\(452\) 0 0
\(453\) 5.65685 + 9.79796i 0.265782 + 0.460348i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.00000 12.1244i −0.327446 0.567153i 0.654558 0.756012i \(-0.272855\pi\)
−0.982004 + 0.188858i \(0.939521\pi\)
\(458\) 0 0
\(459\) −20.0000 + 34.6410i −0.933520 + 1.61690i
\(460\) 0 0
\(461\) −24.0416 −1.11973 −0.559865 0.828584i \(-0.689147\pi\)
−0.559865 + 0.828584i \(0.689147\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) −11.3137 + 19.5959i −0.524661 + 0.908739i
\(466\) 0 0
\(467\) 4.24264 + 7.34847i 0.196326 + 0.340047i 0.947334 0.320246i \(-0.103766\pi\)
−0.751008 + 0.660293i \(0.770432\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 22.0000 + 38.1051i 1.01371 + 1.75579i
\(472\) 0 0
\(473\) 2.00000 3.46410i 0.0919601 0.159280i
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) −30.0000 −1.37361
\(478\) 0 0
\(479\) −16.9706 + 29.3939i −0.775405 + 1.34304i 0.159162 + 0.987252i \(0.449121\pi\)
−0.934567 + 0.355788i \(0.884213\pi\)
\(480\) 0 0
\(481\) 5.65685 + 9.79796i 0.257930 + 0.446748i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.00000 12.1244i −0.317854 0.550539i
\(486\) 0 0
\(487\) 10.0000 17.3205i 0.453143 0.784867i −0.545436 0.838152i \(-0.683636\pi\)
0.998579 + 0.0532853i \(0.0169693\pi\)
\(488\) 0 0
\(489\) 11.3137 0.511624
\(490\) 0 0
\(491\) −32.0000 −1.44414 −0.722070 0.691820i \(-0.756809\pi\)
−0.722070 + 0.691820i \(0.756809\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −3.53553 6.12372i −0.158910 0.275241i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 20.7846i −0.537194 0.930447i −0.999054 0.0434940i \(-0.986151\pi\)
0.461860 0.886953i \(-0.347182\pi\)
\(500\) 0 0
\(501\) −8.00000 + 13.8564i −0.357414 + 0.619059i
\(502\) 0 0
\(503\) 5.65685 0.252227 0.126113 0.992016i \(-0.459750\pi\)
0.126113 + 0.992016i \(0.459750\pi\)
\(504\) 0 0
\(505\) −26.0000 −1.15698
\(506\) 0 0
\(507\) −15.5563 + 26.9444i −0.690882 + 1.19664i
\(508\) 0 0
\(509\) −14.8492 25.7196i −0.658181 1.14000i −0.981086 0.193572i \(-0.937993\pi\)
0.322905 0.946431i \(-0.395341\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.00000 13.8564i −0.353209 0.611775i
\(514\) 0 0
\(515\) 12.0000 20.7846i 0.528783 0.915879i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) −3.53553 + 6.12372i −0.154895 + 0.268285i −0.933021 0.359823i \(-0.882837\pi\)
0.778126 + 0.628108i \(0.216170\pi\)
\(522\) 0 0
\(523\) 21.2132 + 36.7423i 0.927589 + 1.60663i 0.787344 + 0.616514i \(0.211456\pi\)
0.140244 + 0.990117i \(0.455211\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 + 34.6410i 0.871214 + 1.50899i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) −42.4264 −1.84115
\(532\) 0 0
\(533\) −14.0000 −0.606407
\(534\) 0 0
\(535\) −5.65685 + 9.79796i −0.244567 + 0.423603i
\(536\) 0 0
\(537\) −22.6274 39.1918i −0.976445 1.69125i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 15.0000 + 25.9808i 0.644900 + 1.11700i 0.984325 + 0.176367i \(0.0564345\pi\)
−0.339424 + 0.940633i \(0.610232\pi\)
\(542\) 0 0
\(543\) −18.0000 + 31.1769i −0.772454 + 1.33793i
\(544\) 0 0
\(545\) −22.6274 −0.969252
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) −3.53553 + 6.12372i −0.150893 + 0.261354i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 16.0000 + 27.7128i 0.679162 + 1.17634i
\(556\) 0 0
\(557\) 9.00000 15.5885i 0.381342 0.660504i −0.609912 0.792469i \(-0.708795\pi\)
0.991254 + 0.131965i \(0.0421286\pi\)
\(558\) 0 0
\(559\) 5.65685 0.239259
\(560\) 0 0
\(561\) −20.0000 −0.844401
\(562\) 0 0
\(563\) 18.3848 31.8434i 0.774826 1.34204i −0.160066 0.987106i \(-0.551171\pi\)
0.934892 0.354932i \(-0.115496\pi\)
\(564\) 0 0
\(565\) 4.24264 + 7.34847i 0.178489 + 0.309152i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) −22.0000 + 38.1051i −0.920671 + 1.59465i −0.122292 + 0.992494i \(0.539025\pi\)
−0.798379 + 0.602155i \(0.794309\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) −10.6066 + 18.3712i −0.441559 + 0.764802i −0.997805 0.0662152i \(-0.978908\pi\)
0.556247 + 0.831017i \(0.312241\pi\)
\(578\) 0 0
\(579\) 8.48528 + 14.6969i 0.352636 + 0.610784i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.00000 5.19615i −0.124247 0.215203i
\(584\) 0 0
\(585\) 5.00000 8.66025i 0.206725 0.358057i
\(586\) 0 0
\(587\) 14.1421 0.583708 0.291854 0.956463i \(-0.405728\pi\)
0.291854 + 0.956463i \(0.405728\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 8.48528 14.6969i 0.349038 0.604551i
\(592\) 0 0
\(593\) 3.53553 + 6.12372i 0.145187 + 0.251471i 0.929443 0.368967i \(-0.120288\pi\)
−0.784256 + 0.620438i \(0.786955\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 24.0000 + 41.5692i 0.982255 + 1.70131i
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 35.3553 1.44217 0.721087 0.692844i \(-0.243643\pi\)
0.721087 + 0.692844i \(0.243643\pi\)
\(602\) 0 0
\(603\) −40.0000 −1.62893
\(604\) 0 0
\(605\) 0.707107 1.22474i 0.0287480 0.0497930i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −16.0000 + 27.7128i −0.646234 + 1.11931i 0.337781 + 0.941225i \(0.390324\pi\)
−0.984015 + 0.178085i \(0.943010\pi\)
\(614\) 0 0
\(615\) −39.5980 −1.59674
\(616\) 0 0
\(617\) −24.0000 −0.966204 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(618\) 0 0
\(619\) 4.24264 7.34847i 0.170526 0.295360i −0.768078 0.640357i \(-0.778787\pi\)
0.938604 + 0.344997i \(0.112120\pi\)
\(620\) 0 0
\(621\) 11.3137 + 19.5959i 0.454003 + 0.786357i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 4.00000 6.92820i 0.159745 0.276686i
\(628\) 0 0
\(629\) 56.5685 2.25554
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) −11.3137 + 19.5959i −0.449680 + 0.778868i
\(634\) 0 0
\(635\) 8.48528 + 14.6969i 0.336728 + 0.583230i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −20.0000 34.6410i −0.791188 1.37038i
\(640\) 0 0
\(641\) 12.0000 20.7846i 0.473972 0.820943i −0.525584 0.850741i \(-0.676153\pi\)
0.999556 + 0.0297987i \(0.00948663\pi\)
\(642\) 0 0
\(643\) −42.4264 −1.67313 −0.836567 0.547865i \(-0.815441\pi\)
−0.836567 + 0.547865i \(0.815441\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) 14.1421 24.4949i 0.555985 0.962994i −0.441841 0.897093i \(-0.645675\pi\)
0.997826 0.0659006i \(-0.0209920\pi\)
\(648\) 0 0
\(649\) −4.24264 7.34847i −0.166538 0.288453i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 0 0
\(655\) −2.00000 + 3.46410i −0.0781465 + 0.135354i
\(656\) 0 0
\(657\) 7.07107 0.275869
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) −10.6066 + 18.3712i −0.412549 + 0.714556i −0.995168 0.0981898i \(-0.968695\pi\)
0.582619 + 0.812746i \(0.302028\pi\)
\(662\) 0 0
\(663\) −14.1421 24.4949i −0.549235 0.951303i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 27.7128i 0.618596 1.07144i
\(670\) 0 0
\(671\) −1.41421 −0.0545951
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) −8.48528 + 14.6969i −0.326599 + 0.565685i
\(676\) 0 0
\(677\) −24.7487 42.8661i −0.951171 1.64748i −0.742896 0.669407i \(-0.766548\pi\)
−0.208275 0.978070i \(-0.566785\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.00000 + 6.92820i 0.153280 + 0.265489i
\(682\) 0 0
\(683\) −24.0000 + 41.5692i −0.918334 + 1.59060i −0.116390 + 0.993204i \(0.537132\pi\)
−0.801945 + 0.597398i \(0.796201\pi\)
\(684\) 0 0
\(685\) −22.6274 −0.864549
\(686\) 0 0
\(687\) 36.0000 1.37349
\(688\) 0 0
\(689\) 4.24264 7.34847i 0.161632 0.279954i
\(690\) 0 0
\(691\) −1.41421 2.44949i −0.0537992 0.0931830i 0.837872 0.545867i \(-0.183800\pi\)
−0.891671 + 0.452684i \(0.850466\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.0000 + 24.2487i 0.531050 + 0.919806i
\(696\) 0 0
\(697\) −35.0000 + 60.6218i −1.32572 + 2.29621i
\(698\) 0 0
\(699\) 67.8823 2.56754
\(700\) 0 0
\(701\) 32.0000 1.20862 0.604312 0.796748i \(-0.293448\pi\)
0.604312 + 0.796748i \(0.293448\pi\)
\(702\) 0 0
\(703\) −11.3137 + 19.5959i −0.426705 + 0.739074i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20.0000 34.6410i −0.751116 1.30097i −0.947282 0.320400i \(-0.896183\pi\)
0.196167 0.980571i \(-0.437151\pi\)
\(710\) 0 0
\(711\) −40.0000 + 69.2820i −1.50012 + 2.59828i
\(712\) 0 0
\(713\) 22.6274 0.847403
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 0 0
\(717\) 28.2843 48.9898i 1.05630 1.82956i
\(718\) 0 0
\(719\) −5.65685 9.79796i −0.210965 0.365402i 0.741052 0.671448i \(-0.234327\pi\)
−0.952017 + 0.306046i \(0.900994\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 38.0000 + 65.8179i 1.41324 + 2.44780i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 11.3137 0.419602 0.209801 0.977744i \(-0.432718\pi\)
0.209801 + 0.977744i \(0.432718\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 14.1421 24.4949i 0.523066 0.905977i
\(732\) 0 0
\(733\) −10.6066 18.3712i −0.391764 0.678555i 0.600919 0.799310i \(-0.294802\pi\)
−0.992682 + 0.120756i \(0.961468\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.00000 6.92820i −0.147342 0.255204i
\(738\) 0 0
\(739\) −18.0000 + 31.1769i −0.662141 + 1.14686i 0.317911 + 0.948120i \(0.397019\pi\)
−0.980052 + 0.198741i \(0.936315\pi\)
\(740\) 0 0
\(741\) 11.3137 0.415619
\(742\) 0 0
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 0 0
\(745\) −15.5563 + 26.9444i −0.569941 + 0.987166i
\(746\) 0 0
\(747\) −7.07107 12.2474i −0.258717 0.448111i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 14.0000 + 24.2487i 0.510867 + 0.884848i 0.999921 + 0.0125942i \(0.00400897\pi\)
−0.489053 + 0.872254i \(0.662658\pi\)
\(752\) 0 0
\(753\) −20.0000 + 34.6410i −0.728841 + 1.26239i
\(754\) 0 0
\(755\) −5.65685 −0.205874
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) −5.65685 + 9.79796i −0.205331 + 0.355643i
\(760\) 0 0
\(761\) 6.36396 + 11.0227i 0.230693 + 0.399573i 0.958012 0.286727i \(-0.0925672\pi\)
−0.727319 + 0.686300i \(0.759234\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −25.0000 43.3013i −0.903877 1.56556i
\(766\) 0 0
\(767\) 6.00000 10.3923i 0.216647 0.375244i
\(768\) 0 0
\(769\) 4.24264 0.152994 0.0764968 0.997070i \(-0.475627\pi\)
0.0764968 + 0.997070i \(0.475627\pi\)
\(770\) 0 0
\(771\) −4.00000 −0.144056
\(772\) 0 0
\(773\) −4.94975 + 8.57321i −0.178030 + 0.308357i −0.941206 0.337834i \(-0.890306\pi\)
0.763176 + 0.646191i \(0.223639\pi\)
\(774\) 0 0
\(775\) 8.48528 + 14.6969i 0.304800 + 0.527930i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.0000 24.2487i −0.501602 0.868800i
\(780\) 0 0
\(781\) 4.00000 6.92820i 0.143131 0.247911i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) −4.24264 + 7.34847i −0.151234 + 0.261945i −0.931681 0.363277i \(-0.881658\pi\)
0.780447 + 0.625221i \(0.214991\pi\)
\(788\) 0 0
\(789\) −33.9411 58.7878i −1.20834 2.09290i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 1.73205i −0.0355110 0.0615069i
\(794\) 0 0