Properties

Label 2156.2.i.a
Level 21562156
Weight 22
Character orbit 2156.i
Analytic conductor 17.21617.216
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2156,2,Mod(177,2156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2156, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2156.177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2156=227211 2156 = 2^{2} \cdot 7^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2156.i (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-1,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.215746675817.2157466758
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 308)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q3ζ6q5+2ζ6q9+(ζ61)q11+4q13+q15+(6ζ66)q172ζ6q19ζ6q23+(4ζ6+4)q25+2q99+O(q100) q + (\zeta_{6} - 1) q^{3} - \zeta_{6} q^{5} + 2 \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{11} + 4 q^{13} + q^{15} + (6 \zeta_{6} - 6) q^{17} - 2 \zeta_{6} q^{19} - \zeta_{6} q^{23} + ( - 4 \zeta_{6} + 4) q^{25} + \cdots - 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3q5+2q9q11+8q13+2q156q172q19q23+4q2510q27+4q29q31q33+9q374q3912q41+16q43+2q45+4q99+O(q100) 2 q - q^{3} - q^{5} + 2 q^{9} - q^{11} + 8 q^{13} + 2 q^{15} - 6 q^{17} - 2 q^{19} - q^{23} + 4 q^{25} - 10 q^{27} + 4 q^{29} - q^{31} - q^{33} + 9 q^{37} - 4 q^{39} - 12 q^{41} + 16 q^{43} + 2 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2156Z)×\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times.

nn 981981 10791079 12771277
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
177.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 0 1.00000 1.73205i 0
1145.1 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 0 1.00000 + 1.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.i.a 2
7.b odd 2 1 2156.2.i.d 2
7.c even 3 1 2156.2.a.b 1
7.c even 3 1 inner 2156.2.i.a 2
7.d odd 6 1 308.2.a.a 1
7.d odd 6 1 2156.2.i.d 2
21.g even 6 1 2772.2.a.e 1
28.f even 6 1 1232.2.a.j 1
28.g odd 6 1 8624.2.a.n 1
35.i odd 6 1 7700.2.a.i 1
35.k even 12 2 7700.2.e.f 2
56.j odd 6 1 4928.2.a.z 1
56.m even 6 1 4928.2.a.l 1
77.i even 6 1 3388.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.2.a.a 1 7.d odd 6 1
1232.2.a.j 1 28.f even 6 1
2156.2.a.b 1 7.c even 3 1
2156.2.i.a 2 1.a even 1 1 trivial
2156.2.i.a 2 7.c even 3 1 inner
2156.2.i.d 2 7.b odd 2 1
2156.2.i.d 2 7.d odd 6 1
2772.2.a.e 1 21.g even 6 1
3388.2.a.e 1 77.i even 6 1
4928.2.a.l 1 56.m even 6 1
4928.2.a.z 1 56.j odd 6 1
7700.2.a.i 1 35.i odd 6 1
7700.2.e.f 2 35.k even 12 2
8624.2.a.n 1 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2156,[χ])S_{2}^{\mathrm{new}}(2156, [\chi]):

T32+T3+1 T_{3}^{2} + T_{3} + 1 Copy content Toggle raw display
T52+T5+1 T_{5}^{2} + T_{5} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1313 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1717 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2929 (T2)2 (T - 2)^{2} Copy content Toggle raw display
3131 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
3737 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4747 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
5353 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
5959 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6161 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6767 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
7171 (T11)2 (T - 11)^{2} Copy content Toggle raw display
7373 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
7979 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
8383 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8989 T213T+169 T^{2} - 13T + 169 Copy content Toggle raw display
9797 (T9)2 (T - 9)^{2} Copy content Toggle raw display
show more
show less