Properties

Label 2156.2.c.c
Level $2156$
Weight $2$
Character orbit 2156.c
Analytic conductor $17.216$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1077,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1077");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} - 17x^{12} - 343x^{10} + 490x^{8} - 16807x^{6} - 40817x^{4} + 235298x^{2} + 5764801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 308)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - \beta_{3} q^{5} + \beta_{5} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{2} q^{3} - \beta_{3} q^{5} + \beta_{5} q^{9} - \beta_{11} q^{11} - \beta_{14} q^{13} + q^{15} - \beta_{7} q^{17} - \beta_{7} q^{19} + (\beta_{11} - \beta_{10} - \beta_{5}) q^{23} + (\beta_{11} - \beta_{10} + \cdots + \beta_{4}) q^{25}+ \cdots + ( - \beta_{13} + \beta_{12} - \beta_{11} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{9} + 2 q^{11} + 16 q^{15} + 4 q^{23} + 12 q^{25} - 4 q^{37} - 16 q^{53} + 36 q^{67} - 76 q^{71} + 16 q^{81} - 20 q^{93} - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 2x^{14} - 17x^{12} - 343x^{10} + 490x^{8} - 16807x^{6} - 40817x^{4} + 235298x^{2} + 5764801 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -3\nu^{14} - 5\nu^{12} + 298\nu^{10} - 409\nu^{8} + 2205\nu^{6} + 25774\nu^{4} + 328937\nu^{2} - 5332621 ) / 316932 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 445 \nu^{14} + 2311 \nu^{12} - 18786 \nu^{10} + 37583 \nu^{8} - 234367 \nu^{6} - 4048086 \nu^{4} + \cdots + 342476239 ) / 46589004 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 541 \nu^{14} + 1327 \nu^{12} - 39234 \nu^{10} + 20531 \nu^{8} - 253183 \nu^{6} - 5517498 \nu^{4} + \cdots + 696835027 ) / 46589004 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 87 \nu^{14} - 512 \nu^{12} + 579 \nu^{10} - 11319 \nu^{8} + 51548 \nu^{6} - 1663893 \nu^{4} + \cdots + 14941423 ) / 3882417 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 100 \nu^{14} + 731 \nu^{12} - 554 \nu^{10} + 10241 \nu^{8} - 96677 \nu^{6} + 1716715 \nu^{4} + \cdots - 21294469 ) / 3882417 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 87 \nu^{15} - 811 \nu^{13} - 4597 \nu^{11} + 14259 \nu^{9} + 106232 \nu^{7} + \cdots + 53294997 \nu ) / 27176919 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1349 \nu^{15} + 2159 \nu^{13} - 69630 \nu^{11} - 23765 \nu^{9} - 983675 \nu^{7} + \cdots + 1253550095 \nu ) / 326123028 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 3603 \nu^{15} + 1127 \nu^{14} - 879 \nu^{13} + 2597 \nu^{12} - 127842 \nu^{11} + \cdots + 4367248529 ) / 652246056 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 3603 \nu^{15} + 1127 \nu^{14} + 879 \nu^{13} + 2597 \nu^{12} + 127842 \nu^{11} + \cdots + 4367248529 ) / 652246056 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 687 \nu^{15} + 1022 \nu^{14} - 5045 \nu^{13} - 6188 \nu^{12} + 30706 \nu^{11} - 224 \nu^{10} + \cdots + 220709524 ) / 108707676 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 687 \nu^{15} - 1022 \nu^{14} - 5045 \nu^{13} + 6188 \nu^{12} + 30706 \nu^{11} + 224 \nu^{10} + \cdots - 220709524 ) / 108707676 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 277 \nu^{15} - 1798 \nu^{13} + 7394 \nu^{11} - 55027 \nu^{9} + 354221 \nu^{7} + \cdots - 6000099 \nu ) / 27176919 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 281 \nu^{15} - 3799 \nu^{13} + 10511 \nu^{11} - 75068 \nu^{9} + 317765 \nu^{7} + \cdots - 21882714 \nu ) / 27176919 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 2795 \nu^{15} + 1417 \nu^{13} + 135960 \nu^{11} - 36799 \nu^{9} + 87857 \nu^{7} + \cdots - 2658279155 \nu ) / 163061514 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 14071 \nu^{15} - 1127 \nu^{14} + 3659 \nu^{13} - 2597 \nu^{12} + 689370 \nu^{11} + \cdots - 4367248529 ) / 652246056 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{15} + \beta_{14} + 3\beta_{12} - 2\beta_{11} - 2\beta_{10} + \beta_{9} - 3\beta_{8} - 3\beta_{7} - \beta_{6} ) / 14 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{11} - 2\beta_{10} - 2\beta_{5} - \beta_{4} + 4\beta_{3} - \beta_{2} + 3\beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5 \beta_{15} - 20 \beta_{14} + 7 \beta_{13} - 11 \beta_{12} - 2 \beta_{11} - 2 \beta_{10} + \cdots - 15 \beta_{6} ) / 14 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 8 \beta_{11} + 8 \beta_{10} + 11 \beta_{9} + 11 \beta_{8} - 7 \beta_{5} - 14 \beta_{4} - 13 \beta_{3} + \cdots + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 19 \beta_{15} - 90 \beta_{14} - 39 \beta_{12} + 40 \beta_{11} + 40 \beta_{10} + 169 \beta_{9} + \cdots - 22 \beta_{6} ) / 14 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 111 \beta_{11} + 111 \beta_{10} - 71 \beta_{9} - 71 \beta_{8} - 6 \beta_{5} - 108 \beta_{4} + \cdots + 199 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 243 \beta_{15} - 797 \beta_{14} - 714 \beta_{13} + 1116 \beta_{12} - 16 \beta_{11} + \cdots + 475 \beta_{6} ) / 14 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 772 \beta_{11} - 772 \beta_{10} - 259 \beta_{9} - 259 \beta_{8} - 793 \beta_{5} - 365 \beta_{4} + \cdots - 1163 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 1821 \beta_{15} - 213 \beta_{14} - 1001 \beta_{13} - 3383 \beta_{12} + 3247 \beta_{11} + \cdots + 612 \beta_{6} ) / 7 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 734 \beta_{11} - 734 \beta_{10} + 683 \beta_{9} + 683 \beta_{8} - 623 \beta_{5} + 413 \beta_{4} + \cdots + 30209 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 39741 \beta_{15} + 33461 \beta_{14} - 6762 \beta_{13} + 36522 \beta_{12} - 8164 \beta_{11} + \cdots - 23381 \beta_{6} ) / 14 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 20721 \beta_{11} - 20721 \beta_{10} - 9101 \beta_{9} - 9101 \beta_{8} - 18066 \beta_{5} - 15606 \beta_{4} + \cdots + 46133 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 77201 \beta_{15} - 296232 \beta_{14} - 30114 \beta_{13} + 67371 \beta_{12} - 114452 \beta_{11} + \cdots - 337366 \beta_{6} ) / 14 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 2102 \beta_{11} - 2102 \beta_{10} + 160643 \beta_{9} + 160643 \beta_{8} - 207503 \beta_{5} + \cdots - 401668 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 442825 \beta_{15} - 1982098 \beta_{14} - 105833 \beta_{13} - 1721171 \beta_{12} + \cdots - 1105917 \beta_{6} ) / 14 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1077.1
2.64407 + 0.0942693i
−2.64407 0.0942693i
−0.938723 + 2.47362i
0.938723 2.47362i
2.16092 1.52658i
−2.16092 + 1.52658i
0.978837 2.45802i
−0.978837 + 2.45802i
−0.978837 2.45802i
0.978837 + 2.45802i
−2.16092 1.52658i
2.16092 + 1.52658i
0.938723 + 2.47362i
−0.938723 2.47362i
−2.64407 + 0.0942693i
2.64407 0.0942693i
0 2.73846i 0 0.365169i 0 0 0 −4.49914 0
1077.2 0 2.73846i 0 0.365169i 0 0 0 −4.49914 0
1077.3 0 2.47749i 0 0.403634i 0 0 0 −3.13796 0
1077.4 0 2.47749i 0 0.403634i 0 0 0 −3.13796 0
1077.5 0 0.535970i 0 1.86578i 0 0 0 2.71274 0
1077.6 0 0.535970i 0 1.86578i 0 0 0 2.71274 0
1077.7 0 0.275005i 0 3.63629i 0 0 0 2.92437 0
1077.8 0 0.275005i 0 3.63629i 0 0 0 2.92437 0
1077.9 0 0.275005i 0 3.63629i 0 0 0 2.92437 0
1077.10 0 0.275005i 0 3.63629i 0 0 0 2.92437 0
1077.11 0 0.535970i 0 1.86578i 0 0 0 2.71274 0
1077.12 0 0.535970i 0 1.86578i 0 0 0 2.71274 0
1077.13 0 2.47749i 0 0.403634i 0 0 0 −3.13796 0
1077.14 0 2.47749i 0 0.403634i 0 0 0 −3.13796 0
1077.15 0 2.73846i 0 0.365169i 0 0 0 −4.49914 0
1077.16 0 2.73846i 0 0.365169i 0 0 0 −4.49914 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1077.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
11.b odd 2 1 inner
77.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.c.c 16
7.b odd 2 1 inner 2156.2.c.c 16
7.c even 3 1 308.2.q.a 16
7.c even 3 1 2156.2.q.c 16
7.d odd 6 1 308.2.q.a 16
7.d odd 6 1 2156.2.q.c 16
11.b odd 2 1 inner 2156.2.c.c 16
21.g even 6 1 2772.2.cs.a 16
21.h odd 6 1 2772.2.cs.a 16
28.f even 6 1 1232.2.bn.c 16
28.g odd 6 1 1232.2.bn.c 16
77.b even 2 1 inner 2156.2.c.c 16
77.h odd 6 1 308.2.q.a 16
77.h odd 6 1 2156.2.q.c 16
77.i even 6 1 308.2.q.a 16
77.i even 6 1 2156.2.q.c 16
231.k odd 6 1 2772.2.cs.a 16
231.l even 6 1 2772.2.cs.a 16
308.m odd 6 1 1232.2.bn.c 16
308.n even 6 1 1232.2.bn.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.2.q.a 16 7.c even 3 1
308.2.q.a 16 7.d odd 6 1
308.2.q.a 16 77.h odd 6 1
308.2.q.a 16 77.i even 6 1
1232.2.bn.c 16 28.f even 6 1
1232.2.bn.c 16 28.g odd 6 1
1232.2.bn.c 16 308.m odd 6 1
1232.2.bn.c 16 308.n even 6 1
2156.2.c.c 16 1.a even 1 1 trivial
2156.2.c.c 16 7.b odd 2 1 inner
2156.2.c.c 16 11.b odd 2 1 inner
2156.2.c.c 16 77.b even 2 1 inner
2156.2.q.c 16 7.c even 3 1
2156.2.q.c 16 7.d odd 6 1
2156.2.q.c 16 77.h odd 6 1
2156.2.q.c 16 77.i even 6 1
2772.2.cs.a 16 21.g even 6 1
2772.2.cs.a 16 21.h odd 6 1
2772.2.cs.a 16 231.k odd 6 1
2772.2.cs.a 16 231.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 14T_{3}^{6} + 51T_{3}^{4} + 17T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(2156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} + 14 T^{6} + 51 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{8} + 17 T^{6} + 51 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( (T^{8} - T^{7} + \cdots + 14641)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} - 95 T^{6} + \cdots + 240100)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} - 92 T^{6} + \cdots + 117649)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} - 92 T^{6} + \cdots + 117649)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - T^{3} - 33 T^{2} + \cdots + 211)^{4} \) Copy content Toggle raw display
$29$ \( (T^{8} + 195 T^{6} + \cdots + 1382976)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 134 T^{6} + \cdots + 790321)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + T^{3} - 36 T^{2} + \cdots + 40)^{4} \) Copy content Toggle raw display
$41$ \( (T^{8} - 95 T^{6} + \cdots + 240100)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 208 T^{6} + \cdots + 9604)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 158 T^{6} + \cdots + 39601)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 4 T^{3} + \cdots + 931)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} + 209 T^{6} + \cdots + 2337841)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} - 309 T^{6} + \cdots + 12446784)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 9 T^{3} + \cdots + 264)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 19 T^{3} + \cdots + 16)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} - 441 T^{6} + \cdots + 26471025)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 334 T^{6} + \cdots + 5764801)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} - 263 T^{6} + \cdots + 38416)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + 378 T^{6} + \cdots + 3381921)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + 191 T^{6} + \cdots + 283024)^{2} \) Copy content Toggle raw display
show more
show less