Properties

Label 2156.2.a.m
Level $2156$
Weight $2$
Character orbit 2156.a
Self dual yes
Analytic conductor $17.216$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.301088.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 13x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{2} q^{5} + (\beta_{3} + 4) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + \beta_{2} q^{5} + (\beta_{3} + 4) q^{9} + q^{11} + (\beta_{2} + \beta_1) q^{13} + (\beta_{3} + 1) q^{15} + ( - \beta_{2} + \beta_1) q^{17} - 2 \beta_1 q^{19} + ( - \beta_{3} + 3) q^{23} + ( - \beta_{3} + 2) q^{25} + (3 \beta_{2} + 4 \beta_1) q^{27} - 6 q^{29} + \beta_1 q^{31} + \beta_1 q^{33} + ( - \beta_{3} - 1) q^{37} + (2 \beta_{3} + 8) q^{39} + ( - 3 \beta_{2} - \beta_1) q^{41} - 2 \beta_{3} q^{43} + 4 \beta_1 q^{45} + (\beta_{2} - \beta_1) q^{47} + 6 q^{51} + ( - 2 \beta_{3} - 2) q^{53} + \beta_{2} q^{55} + ( - 2 \beta_{3} - 14) q^{57} + (2 \beta_{2} - \beta_1) q^{59} + ( - \beta_{2} - 3 \beta_1) q^{61} + 8 q^{65} + (\beta_{3} + 9) q^{67} - 3 \beta_{2} q^{69} + (\beta_{3} + 1) q^{71} + ( - 3 \beta_{2} + 3 \beta_1) q^{73} + ( - 3 \beta_{2} - \beta_1) q^{75} + 6 q^{79} + (4 \beta_{3} + 19) q^{81} + ( - 2 \beta_{2} + 2 \beta_1) q^{83} + (2 \beta_{3} - 6) q^{85} - 6 \beta_1 q^{87} + ( - \beta_{2} + 4 \beta_1) q^{89} + (\beta_{3} + 7) q^{93} + ( - 2 \beta_{3} - 2) q^{95} + ( - \beta_{2} - 2 \beta_1) q^{97} + (\beta_{3} + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 14 q^{9} + 4 q^{11} + 2 q^{15} + 14 q^{23} + 10 q^{25} - 24 q^{29} - 2 q^{37} + 28 q^{39} + 4 q^{43} + 24 q^{51} - 4 q^{53} - 52 q^{57} + 32 q^{65} + 34 q^{67} + 2 q^{71} + 24 q^{79} + 68 q^{81} - 28 q^{85} + 26 q^{93} - 4 q^{95} + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 13x^{2} + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 10\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.38000
−1.25522
1.25522
3.38000
0 −3.38000 0 −1.60486 0 0 0 8.42443 0
1.2 0 −1.25522 0 3.52483 0 0 0 −1.42443 0
1.3 0 1.25522 0 −3.52483 0 0 0 −1.42443 0
1.4 0 3.38000 0 1.60486 0 0 0 8.42443 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.a.m 4
4.b odd 2 1 8624.2.a.cx 4
7.b odd 2 1 inner 2156.2.a.m 4
7.c even 3 2 2156.2.i.n 8
7.d odd 6 2 2156.2.i.n 8
28.d even 2 1 8624.2.a.cx 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2156.2.a.m 4 1.a even 1 1 trivial
2156.2.a.m 4 7.b odd 2 1 inner
2156.2.i.n 8 7.c even 3 2
2156.2.i.n 8 7.d odd 6 2
8624.2.a.cx 4 4.b odd 2 1
8624.2.a.cx 4 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 13T_{3}^{2} + 18 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2156))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 13T^{2} + 18 \) Copy content Toggle raw display
$5$ \( T^{4} - 15T^{2} + 32 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T - 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 30T^{2} + 128 \) Copy content Toggle raw display
$17$ \( T^{4} - 26T^{2} + 72 \) Copy content Toggle raw display
$19$ \( T^{4} - 52T^{2} + 288 \) Copy content Toggle raw display
$23$ \( (T^{2} - 7 T - 12)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 13T^{2} + 18 \) Copy content Toggle raw display
$37$ \( (T^{2} + T - 24)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 154T^{2} + 5832 \) Copy content Toggle raw display
$43$ \( (T^{2} - 2 T - 96)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 26T^{2} + 72 \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T - 96)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 69T^{2} + 2 \) Copy content Toggle raw display
$61$ \( T^{4} - 138T^{2} + 8 \) Copy content Toggle raw display
$67$ \( (T^{2} - 17 T + 48)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - T - 24)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 234T^{2} + 5832 \) Copy content Toggle raw display
$79$ \( (T - 6)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 104T^{2} + 1152 \) Copy content Toggle raw display
$89$ \( T^{4} - 215 T^{2} + 10368 \) Copy content Toggle raw display
$97$ \( T^{4} - 71T^{2} + 72 \) Copy content Toggle raw display
show more
show less