Properties

Label 2156.2.a.e.1.2
Level $2156$
Weight $2$
Character 2156.1
Self dual yes
Analytic conductor $17.216$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2156.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{3} -1.00000 q^{9} -1.00000 q^{11} -1.41421 q^{13} -7.07107 q^{17} +2.82843 q^{19} -4.00000 q^{23} -5.00000 q^{25} -5.65685 q^{27} +2.00000 q^{29} -4.24264 q^{31} -1.41421 q^{33} -4.00000 q^{37} -2.00000 q^{39} +1.41421 q^{41} +2.00000 q^{43} +9.89949 q^{47} -10.0000 q^{51} -4.00000 q^{53} +4.00000 q^{57} +4.24264 q^{59} -12.7279 q^{61} -8.00000 q^{67} -5.65685 q^{69} +1.41421 q^{73} -7.07107 q^{75} -10.0000 q^{79} -5.00000 q^{81} +8.48528 q^{83} +2.82843 q^{87} +11.3137 q^{89} -6.00000 q^{93} +8.48528 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} - 2 q^{11} - 8 q^{23} - 10 q^{25} + 4 q^{29} - 8 q^{37} - 4 q^{39} + 4 q^{43} - 20 q^{51} - 8 q^{53} + 8 q^{57} - 16 q^{67} - 20 q^{79} - 10 q^{81} - 12 q^{93} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 0.816497 0.408248 0.912871i \(-0.366140\pi\)
0.408248 + 0.912871i \(0.366140\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.41421 −0.392232 −0.196116 0.980581i \(-0.562833\pi\)
−0.196116 + 0.980581i \(0.562833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.07107 −1.71499 −0.857493 0.514496i \(-0.827979\pi\)
−0.857493 + 0.514496i \(0.827979\pi\)
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −4.24264 −0.762001 −0.381000 0.924575i \(-0.624420\pi\)
−0.381000 + 0.924575i \(0.624420\pi\)
\(32\) 0 0
\(33\) −1.41421 −0.246183
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 1.41421 0.220863 0.110432 0.993884i \(-0.464777\pi\)
0.110432 + 0.993884i \(0.464777\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.89949 1.44399 0.721995 0.691898i \(-0.243225\pi\)
0.721995 + 0.691898i \(0.243225\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −10.0000 −1.40028
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 4.24264 0.552345 0.276172 0.961108i \(-0.410934\pi\)
0.276172 + 0.961108i \(0.410934\pi\)
\(60\) 0 0
\(61\) −12.7279 −1.62964 −0.814822 0.579712i \(-0.803165\pi\)
−0.814822 + 0.579712i \(0.803165\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) −5.65685 −0.681005
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1.41421 0.165521 0.0827606 0.996569i \(-0.473626\pi\)
0.0827606 + 0.996569i \(0.473626\pi\)
\(74\) 0 0
\(75\) −7.07107 −0.816497
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 8.48528 0.931381 0.465690 0.884948i \(-0.345806\pi\)
0.465690 + 0.884948i \(0.345806\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.82843 0.303239
\(88\) 0 0
\(89\) 11.3137 1.19925 0.599625 0.800281i \(-0.295316\pi\)
0.599625 + 0.800281i \(0.295316\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.48528 0.861550 0.430775 0.902459i \(-0.358240\pi\)
0.430775 + 0.902459i \(0.358240\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −1.41421 −0.140720 −0.0703598 0.997522i \(-0.522415\pi\)
−0.0703598 + 0.997522i \(0.522415\pi\)
\(102\) 0 0
\(103\) 7.07107 0.696733 0.348367 0.937358i \(-0.386736\pi\)
0.348367 + 0.937358i \(0.386736\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −5.65685 −0.536925
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.41421 0.130744
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 2.82843 0.249029
\(130\) 0 0
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) −8.48528 −0.719712 −0.359856 0.933008i \(-0.617174\pi\)
−0.359856 + 0.933008i \(0.617174\pi\)
\(140\) 0 0
\(141\) 14.0000 1.17901
\(142\) 0 0
\(143\) 1.41421 0.118262
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 7.07107 0.571662
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 11.3137 0.902932 0.451466 0.892288i \(-0.350901\pi\)
0.451466 + 0.892288i \(0.350901\pi\)
\(158\) 0 0
\(159\) −5.65685 −0.448618
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.3137 0.875481 0.437741 0.899101i \(-0.355779\pi\)
0.437741 + 0.899101i \(0.355779\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) −2.82843 −0.216295
\(172\) 0 0
\(173\) −15.5563 −1.18273 −0.591364 0.806405i \(-0.701410\pi\)
−0.591364 + 0.806405i \(0.701410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 19.7990 1.47165 0.735824 0.677173i \(-0.236795\pi\)
0.735824 + 0.677173i \(0.236795\pi\)
\(182\) 0 0
\(183\) −18.0000 −1.33060
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.07107 0.517088
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) 24.0416 1.70427 0.852133 0.523325i \(-0.175309\pi\)
0.852133 + 0.523325i \(0.175309\pi\)
\(200\) 0 0
\(201\) −11.3137 −0.798007
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −2.82843 −0.195646
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 10.0000 0.672673
\(222\) 0 0
\(223\) 7.07107 0.473514 0.236757 0.971569i \(-0.423916\pi\)
0.236757 + 0.971569i \(0.423916\pi\)
\(224\) 0 0
\(225\) 5.00000 0.333333
\(226\) 0 0
\(227\) 22.6274 1.50183 0.750917 0.660396i \(-0.229612\pi\)
0.750917 + 0.660396i \(0.229612\pi\)
\(228\) 0 0
\(229\) 14.1421 0.934539 0.467269 0.884115i \(-0.345238\pi\)
0.467269 + 0.884115i \(0.345238\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −14.1421 −0.918630
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −26.8701 −1.73085 −0.865426 0.501036i \(-0.832952\pi\)
−0.865426 + 0.501036i \(0.832952\pi\)
\(242\) 0 0
\(243\) 9.89949 0.635053
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −15.5563 −0.981908 −0.490954 0.871185i \(-0.663352\pi\)
−0.490954 + 0.871185i \(0.663352\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.65685 −0.352865 −0.176432 0.984313i \(-0.556456\pi\)
−0.176432 + 0.984313i \(0.556456\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.0000 0.979184
\(268\) 0 0
\(269\) −19.7990 −1.20717 −0.603583 0.797300i \(-0.706261\pi\)
−0.603583 + 0.797300i \(0.706261\pi\)
\(270\) 0 0
\(271\) 25.4558 1.54633 0.773166 0.634203i \(-0.218672\pi\)
0.773166 + 0.634203i \(0.218672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.00000 0.301511
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 4.24264 0.254000
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) −28.2843 −1.68133 −0.840663 0.541559i \(-0.817834\pi\)
−0.840663 + 0.541559i \(0.817834\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 33.0000 1.94118
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) −1.41421 −0.0826192 −0.0413096 0.999146i \(-0.513153\pi\)
−0.0413096 + 0.999146i \(0.513153\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.65685 0.328244
\(298\) 0 0
\(299\) 5.65685 0.327144
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.3137 −0.645707 −0.322854 0.946449i \(-0.604642\pi\)
−0.322854 + 0.946449i \(0.604642\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) −15.5563 −0.882120 −0.441060 0.897478i \(-0.645397\pi\)
−0.441060 + 0.897478i \(0.645397\pi\)
\(312\) 0 0
\(313\) −22.6274 −1.27898 −0.639489 0.768801i \(-0.720854\pi\)
−0.639489 + 0.768801i \(0.720854\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) −2.00000 −0.111979
\(320\) 0 0
\(321\) −16.9706 −0.947204
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) 7.07107 0.392232
\(326\) 0 0
\(327\) −14.1421 −0.782062
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 4.00000 0.219199
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 19.7990 1.07533
\(340\) 0 0
\(341\) 4.24264 0.229752
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) 4.24264 0.227103 0.113552 0.993532i \(-0.463777\pi\)
0.113552 + 0.993532i \(0.463777\pi\)
\(350\) 0 0
\(351\) 8.00000 0.427008
\(352\) 0 0
\(353\) 11.3137 0.602168 0.301084 0.953598i \(-0.402652\pi\)
0.301084 + 0.953598i \(0.402652\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.0000 −1.16112 −0.580558 0.814219i \(-0.697165\pi\)
−0.580558 + 0.814219i \(0.697165\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 0 0
\(363\) 1.41421 0.0742270
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −29.6985 −1.55025 −0.775124 0.631809i \(-0.782313\pi\)
−0.775124 + 0.631809i \(0.782313\pi\)
\(368\) 0 0
\(369\) −1.41421 −0.0736210
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 38.0000 1.96757 0.983783 0.179364i \(-0.0574041\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.82843 −0.145671
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.41421 −0.0722629 −0.0361315 0.999347i \(-0.511504\pi\)
−0.0361315 + 0.999347i \(0.511504\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.00000 −0.101666
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 28.2843 1.43040
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.6274 1.13564 0.567819 0.823154i \(-0.307787\pi\)
0.567819 + 0.823154i \(0.307787\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 6.00000 0.298881
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 12.7279 0.629355 0.314678 0.949199i \(-0.398104\pi\)
0.314678 + 0.949199i \(0.398104\pi\)
\(410\) 0 0
\(411\) −11.3137 −0.558064
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) −21.2132 −1.03633 −0.518166 0.855280i \(-0.673385\pi\)
−0.518166 + 0.855280i \(0.673385\pi\)
\(420\) 0 0
\(421\) 32.0000 1.55958 0.779792 0.626038i \(-0.215325\pi\)
0.779792 + 0.626038i \(0.215325\pi\)
\(422\) 0 0
\(423\) −9.89949 −0.481330
\(424\) 0 0
\(425\) 35.3553 1.71499
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.00000 0.0965609
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) −25.4558 −1.22333 −0.611665 0.791117i \(-0.709500\pi\)
−0.611665 + 0.791117i \(0.709500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.3137 −0.541208
\(438\) 0 0
\(439\) −8.48528 −0.404980 −0.202490 0.979284i \(-0.564903\pi\)
−0.202490 + 0.979284i \(0.564903\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −8.48528 −0.401340
\(448\) 0 0
\(449\) 4.00000 0.188772 0.0943858 0.995536i \(-0.469911\pi\)
0.0943858 + 0.995536i \(0.469911\pi\)
\(450\) 0 0
\(451\) −1.41421 −0.0665927
\(452\) 0 0
\(453\) −2.82843 −0.132891
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) 0 0
\(459\) 40.0000 1.86704
\(460\) 0 0
\(461\) 24.0416 1.11973 0.559865 0.828584i \(-0.310853\pi\)
0.559865 + 0.828584i \(0.310853\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.7279 −0.588978 −0.294489 0.955655i \(-0.595149\pi\)
−0.294489 + 0.955655i \(0.595149\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.0000 0.737241
\(472\) 0 0
\(473\) −2.00000 −0.0919601
\(474\) 0 0
\(475\) −14.1421 −0.648886
\(476\) 0 0
\(477\) 4.00000 0.183147
\(478\) 0 0
\(479\) −25.4558 −1.16311 −0.581554 0.813508i \(-0.697555\pi\)
−0.581554 + 0.813508i \(0.697555\pi\)
\(480\) 0 0
\(481\) 5.65685 0.257930
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 0 0
\(489\) −5.65685 −0.255812
\(490\) 0 0
\(491\) −34.0000 −1.53440 −0.767199 0.641409i \(-0.778350\pi\)
−0.767199 + 0.641409i \(0.778350\pi\)
\(492\) 0 0
\(493\) −14.1421 −0.636930
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) 19.7990 0.882793 0.441397 0.897312i \(-0.354483\pi\)
0.441397 + 0.897312i \(0.354483\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.5563 −0.690882
\(508\) 0 0
\(509\) 25.4558 1.12831 0.564155 0.825669i \(-0.309202\pi\)
0.564155 + 0.825669i \(0.309202\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −16.0000 −0.706417
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.89949 −0.435379
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) 36.7696 1.61090 0.805452 0.592661i \(-0.201923\pi\)
0.805452 + 0.592661i \(0.201923\pi\)
\(522\) 0 0
\(523\) −16.9706 −0.742071 −0.371035 0.928619i \(-0.620997\pi\)
−0.371035 + 0.928619i \(0.620997\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30.0000 1.30682
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −4.24264 −0.184115
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.65685 −0.244111
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6.00000 −0.257960 −0.128980 0.991647i \(-0.541170\pi\)
−0.128980 + 0.991647i \(0.541170\pi\)
\(542\) 0 0
\(543\) 28.0000 1.20160
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 12.7279 0.543214
\(550\) 0 0
\(551\) 5.65685 0.240990
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) −2.82843 −0.119630
\(560\) 0 0
\(561\) 10.0000 0.422200
\(562\) 0 0
\(563\) −2.82843 −0.119204 −0.0596020 0.998222i \(-0.518983\pi\)
−0.0596020 + 0.998222i \(0.518983\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) −11.3137 −0.472637
\(574\) 0 0
\(575\) 20.0000 0.834058
\(576\) 0 0
\(577\) 19.7990 0.824243 0.412121 0.911129i \(-0.364788\pi\)
0.412121 + 0.911129i \(0.364788\pi\)
\(578\) 0 0
\(579\) −19.7990 −0.822818
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.8701 1.10905 0.554523 0.832168i \(-0.312901\pi\)
0.554523 + 0.832168i \(0.312901\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 36.7696 1.51250
\(592\) 0 0
\(593\) −12.7279 −0.522673 −0.261337 0.965248i \(-0.584163\pi\)
−0.261337 + 0.965248i \(0.584163\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 34.0000 1.39153
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) 12.7279 0.519183 0.259591 0.965719i \(-0.416412\pi\)
0.259591 + 0.965719i \(0.416412\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −16.9706 −0.688814 −0.344407 0.938820i \(-0.611920\pi\)
−0.344407 + 0.938820i \(0.611920\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.0000 −0.566379
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.0000 1.28827 0.644136 0.764911i \(-0.277217\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 32.5269 1.30737 0.653683 0.756768i \(-0.273223\pi\)
0.653683 + 0.756768i \(0.273223\pi\)
\(620\) 0 0
\(621\) 22.6274 0.908007
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) 28.2843 1.12777
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 0 0
\(633\) −28.2843 −1.12420
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20.0000 −0.789953 −0.394976 0.918691i \(-0.629247\pi\)
−0.394976 + 0.918691i \(0.629247\pi\)
\(642\) 0 0
\(643\) 12.7279 0.501940 0.250970 0.967995i \(-0.419250\pi\)
0.250970 + 0.967995i \(0.419250\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.5563 −0.611583 −0.305792 0.952098i \(-0.598921\pi\)
−0.305792 + 0.952098i \(0.598921\pi\)
\(648\) 0 0
\(649\) −4.24264 −0.166538
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.41421 −0.0551737
\(658\) 0 0
\(659\) 38.0000 1.48027 0.740135 0.672458i \(-0.234762\pi\)
0.740135 + 0.672458i \(0.234762\pi\)
\(660\) 0 0
\(661\) 33.9411 1.32016 0.660078 0.751197i \(-0.270523\pi\)
0.660078 + 0.751197i \(0.270523\pi\)
\(662\) 0 0
\(663\) 14.1421 0.549235
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) 12.7279 0.491356
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 0 0
\(675\) 28.2843 1.08866
\(676\) 0 0
\(677\) −35.3553 −1.35882 −0.679408 0.733761i \(-0.737763\pi\)
−0.679408 + 0.733761i \(0.737763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 32.0000 1.22624
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 20.0000 0.763048
\(688\) 0 0
\(689\) 5.65685 0.215509
\(690\) 0 0
\(691\) −38.1838 −1.45258 −0.726289 0.687389i \(-0.758757\pi\)
−0.726289 + 0.687389i \(0.758757\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −10.0000 −0.378777
\(698\) 0 0
\(699\) −2.82843 −0.106981
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −11.3137 −0.426705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 0 0
\(713\) 16.9706 0.635553
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −22.6274 −0.845036
\(718\) 0 0
\(719\) 43.8406 1.63498 0.817490 0.575943i \(-0.195365\pi\)
0.817490 + 0.575943i \(0.195365\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −38.0000 −1.41324
\(724\) 0 0
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) 35.3553 1.31126 0.655628 0.755084i \(-0.272404\pi\)
0.655628 + 0.755084i \(0.272404\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) −14.1421 −0.523066
\(732\) 0 0
\(733\) −18.3848 −0.679057 −0.339529 0.940596i \(-0.610268\pi\)
−0.339529 + 0.940596i \(0.610268\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −5.65685 −0.207810
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8.48528 −0.310460
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 0 0
\(753\) −22.0000 −0.801725
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 5.65685 0.205331
\(760\) 0 0
\(761\) 12.7279 0.461387 0.230693 0.973026i \(-0.425901\pi\)
0.230693 + 0.973026i \(0.425901\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) −1.41421 −0.0509978 −0.0254989 0.999675i \(-0.508117\pi\)
−0.0254989 + 0.999675i \(0.508117\pi\)
\(770\) 0 0
\(771\) −8.00000 −0.288113
\(772\) 0 0
\(773\) 14.1421 0.508657 0.254329 0.967118i \(-0.418146\pi\)
0.254329 + 0.967118i \(0.418146\pi\)
\(774\) 0 0
\(775\) 21.2132 0.762001
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.00000 0.143315
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −11.3137 −0.404319
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.82843 −0.100823 −0.0504113 0.998729i \(-0.516053\pi\)
−0.0504113 + 0.998729i \(0.516053\pi\)
\(788\) 0 0
\(789\) 11.3137 0.402779
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −39.5980 −1.40263 −0.701316 0.712850i \(-0.747404\pi\)
−0.701316 + 0.712850i \(0.747404\pi\)
\(798\) 0 0
\(799\) −70.0000 −2.47642
\(800\) 0 0
\(801\) −11.3137 −0.399750
\(802\) 0 0
\(803\) −1.41421 −0.0499065
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −28.0000 −0.985647
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −45.2548 −1.58911 −0.794556 0.607191i \(-0.792296\pi\)
−0.794556 + 0.607191i \(0.792296\pi\)
\(812\) 0 0
\(813\) 36.0000 1.26258
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 5.65685 0.197908
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 0 0
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) 0 0
\(825\) 7.07107 0.246183
\(826\) 0 0
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 0 0
\(829\) −11.3137 −0.392941 −0.196471 0.980510i \(-0.562948\pi\)
−0.196471 + 0.980510i \(0.562948\pi\)
\(830\) 0 0
\(831\) −2.82843 −0.0981170
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 24.0000 0.829561
\(838\) 0 0
\(839\) −35.3553 −1.22060 −0.610301 0.792170i \(-0.708951\pi\)
−0.610301 + 0.792170i \(0.708951\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 2.82843 0.0974162
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −40.0000 −1.37280
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) 0 0
\(853\) 4.24264 0.145265 0.0726326 0.997359i \(-0.476860\pi\)
0.0726326 + 0.997359i \(0.476860\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29.6985 1.01448 0.507240 0.861805i \(-0.330666\pi\)
0.507240 + 0.861805i \(0.330666\pi\)
\(858\) 0 0
\(859\) 12.7279 0.434271 0.217136 0.976141i \(-0.430329\pi\)
0.217136 + 0.976141i \(0.430329\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 46.6690 1.58496
\(868\) 0 0
\(869\) 10.0000 0.339227
\(870\) 0 0
\(871\) 11.3137 0.383350
\(872\) 0 0
\(873\) −8.48528 −0.287183
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) −2.00000 −0.0674583
\(880\) 0 0
\(881\) −19.7990 −0.667045 −0.333522 0.942742i \(-0.608237\pi\)
−0.333522 + 0.942742i \(0.608237\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −36.7696 −1.23460 −0.617300 0.786728i \(-0.711774\pi\)
−0.617300 + 0.786728i \(0.711774\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 0 0
\(893\) 28.0000 0.936984
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.00000 0.267112
\(898\) 0 0
\(899\) −8.48528 −0.283000
\(900\) 0 0
\(901\) 28.2843 0.942286
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −32.0000 −1.06254 −0.531271 0.847202i \(-0.678286\pi\)
−0.531271 + 0.847202i \(0.678286\pi\)
\(908\) 0 0
\(909\) 1.41421 0.0469065
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) −8.48528 −0.280822
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) −7.07107 −0.232244
\(928\) 0 0
\(929\) 2.82843 0.0927977 0.0463988 0.998923i \(-0.485225\pi\)
0.0463988 + 0.998923i \(0.485225\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −22.0000 −0.720248
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55.1543 1.80181 0.900907 0.434013i \(-0.142903\pi\)
0.900907 + 0.434013i \(0.142903\pi\)
\(938\) 0 0
\(939\) −32.0000 −1.04428
\(940\) 0 0
\(941\) 26.8701 0.875939 0.437969 0.898990i \(-0.355698\pi\)
0.437969 + 0.898990i \(0.355698\pi\)
\(942\) 0 0
\(943\) −5.65685 −0.184213
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 0 0
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) 31.1127 1.00890
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.82843 −0.0914301
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 58.0000 1.86515 0.932577 0.360971i \(-0.117555\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(968\) 0 0
\(969\) −28.2843 −0.908622
\(970\) 0 0
\(971\) −18.3848 −0.589996 −0.294998 0.955498i \(-0.595319\pi\)
−0.294998 + 0.955498i \(0.595319\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 10.0000 0.320256
\(976\) 0 0
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) −11.3137 −0.361588
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −24.0416 −0.766809 −0.383404 0.923581i \(-0.625248\pi\)
−0.383404 + 0.923581i \(0.625248\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 11.3137 0.359030
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −4.24264 −0.134366 −0.0671829 0.997741i \(-0.521401\pi\)
−0.0671829 + 0.997741i \(0.521401\pi\)
\(998\) 0 0
\(999\) 22.6274 0.715900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2156.2.a.e.1.2 yes 2
4.3 odd 2 8624.2.a.bu.1.1 2
7.2 even 3 2156.2.i.g.1145.1 4
7.3 odd 6 2156.2.i.g.177.2 4
7.4 even 3 2156.2.i.g.177.1 4
7.5 odd 6 2156.2.i.g.1145.2 4
7.6 odd 2 inner 2156.2.a.e.1.1 2
28.27 even 2 8624.2.a.bu.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2156.2.a.e.1.1 2 7.6 odd 2 inner
2156.2.a.e.1.2 yes 2 1.1 even 1 trivial
2156.2.i.g.177.1 4 7.4 even 3
2156.2.i.g.177.2 4 7.3 odd 6
2156.2.i.g.1145.1 4 7.2 even 3
2156.2.i.g.1145.2 4 7.5 odd 6
8624.2.a.bu.1.1 2 4.3 odd 2
8624.2.a.bu.1.2 2 28.27 even 2