Properties

Label 2156.2.a.a
Level $2156$
Weight $2$
Character orbit 2156.a
Self dual yes
Analytic conductor $17.216$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,2,Mod(1,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2156.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.2157466758\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + 3 q^{5} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + 3 q^{5} - 2 q^{9} - q^{11} + 4 q^{13} - 3 q^{15} - 6 q^{17} - 8 q^{19} - 3 q^{23} + 4 q^{25} + 5 q^{27} - 5 q^{31} + q^{33} - q^{37} - 4 q^{39} - 10 q^{43} - 6 q^{45} + 6 q^{51} - 6 q^{53} - 3 q^{55} + 8 q^{57} - 3 q^{59} + 4 q^{61} + 12 q^{65} - q^{67} + 3 q^{69} + 15 q^{71} + 4 q^{73} - 4 q^{75} + 2 q^{79} + q^{81} - 6 q^{83} - 18 q^{85} + 9 q^{89} + 5 q^{93} - 24 q^{95} + 7 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 3.00000 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.2.a.a 1
4.b odd 2 1 8624.2.a.w 1
7.b odd 2 1 44.2.a.a 1
7.c even 3 2 2156.2.i.c 2
7.d odd 6 2 2156.2.i.b 2
21.c even 2 1 396.2.a.c 1
28.d even 2 1 176.2.a.a 1
35.c odd 2 1 1100.2.a.b 1
35.f even 4 2 1100.2.b.c 2
56.e even 2 1 704.2.a.i 1
56.h odd 2 1 704.2.a.f 1
63.l odd 6 2 3564.2.i.j 2
63.o even 6 2 3564.2.i.a 2
77.b even 2 1 484.2.a.a 1
77.j odd 10 4 484.2.e.a 4
77.l even 10 4 484.2.e.b 4
84.h odd 2 1 1584.2.a.p 1
91.b odd 2 1 7436.2.a.d 1
105.g even 2 1 9900.2.a.h 1
105.k odd 4 2 9900.2.c.g 2
112.j even 4 2 2816.2.c.k 2
112.l odd 4 2 2816.2.c.e 2
140.c even 2 1 4400.2.a.v 1
140.j odd 4 2 4400.2.b.k 2
168.e odd 2 1 6336.2.a.i 1
168.i even 2 1 6336.2.a.j 1
231.h odd 2 1 4356.2.a.j 1
308.g odd 2 1 1936.2.a.c 1
616.g odd 2 1 7744.2.a.bc 1
616.o even 2 1 7744.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.2.a.a 1 7.b odd 2 1
176.2.a.a 1 28.d even 2 1
396.2.a.c 1 21.c even 2 1
484.2.a.a 1 77.b even 2 1
484.2.e.a 4 77.j odd 10 4
484.2.e.b 4 77.l even 10 4
704.2.a.f 1 56.h odd 2 1
704.2.a.i 1 56.e even 2 1
1100.2.a.b 1 35.c odd 2 1
1100.2.b.c 2 35.f even 4 2
1584.2.a.p 1 84.h odd 2 1
1936.2.a.c 1 308.g odd 2 1
2156.2.a.a 1 1.a even 1 1 trivial
2156.2.i.b 2 7.d odd 6 2
2156.2.i.c 2 7.c even 3 2
2816.2.c.e 2 112.l odd 4 2
2816.2.c.k 2 112.j even 4 2
3564.2.i.a 2 63.o even 6 2
3564.2.i.j 2 63.l odd 6 2
4356.2.a.j 1 231.h odd 2 1
4400.2.a.v 1 140.c even 2 1
4400.2.b.k 2 140.j odd 4 2
6336.2.a.i 1 168.e odd 2 1
6336.2.a.j 1 168.i even 2 1
7436.2.a.d 1 91.b odd 2 1
7744.2.a.m 1 616.o even 2 1
7744.2.a.bc 1 616.g odd 2 1
8624.2.a.w 1 4.b odd 2 1
9900.2.a.h 1 105.g even 2 1
9900.2.c.g 2 105.k odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2156))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T + 8 \) Copy content Toggle raw display
$23$ \( T + 3 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 5 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 10 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 3 \) Copy content Toggle raw display
$61$ \( T - 4 \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T - 15 \) Copy content Toggle raw display
$73$ \( T - 4 \) Copy content Toggle raw display
$79$ \( T - 2 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T - 9 \) Copy content Toggle raw display
$97$ \( T - 7 \) Copy content Toggle raw display
show more
show less