Newspace parameters
Level: | \( N \) | \(=\) | \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2156.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(17.2157466758\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 44) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −1.00000 | 0 | 3.00000 | 0 | 0 | 0 | −2.00000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(7\) | \(-1\) |
\(11\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2156.2.a.a | 1 | |
4.b | odd | 2 | 1 | 8624.2.a.w | 1 | ||
7.b | odd | 2 | 1 | 44.2.a.a | ✓ | 1 | |
7.c | even | 3 | 2 | 2156.2.i.c | 2 | ||
7.d | odd | 6 | 2 | 2156.2.i.b | 2 | ||
21.c | even | 2 | 1 | 396.2.a.c | 1 | ||
28.d | even | 2 | 1 | 176.2.a.a | 1 | ||
35.c | odd | 2 | 1 | 1100.2.a.b | 1 | ||
35.f | even | 4 | 2 | 1100.2.b.c | 2 | ||
56.e | even | 2 | 1 | 704.2.a.i | 1 | ||
56.h | odd | 2 | 1 | 704.2.a.f | 1 | ||
63.l | odd | 6 | 2 | 3564.2.i.j | 2 | ||
63.o | even | 6 | 2 | 3564.2.i.a | 2 | ||
77.b | even | 2 | 1 | 484.2.a.a | 1 | ||
77.j | odd | 10 | 4 | 484.2.e.a | 4 | ||
77.l | even | 10 | 4 | 484.2.e.b | 4 | ||
84.h | odd | 2 | 1 | 1584.2.a.p | 1 | ||
91.b | odd | 2 | 1 | 7436.2.a.d | 1 | ||
105.g | even | 2 | 1 | 9900.2.a.h | 1 | ||
105.k | odd | 4 | 2 | 9900.2.c.g | 2 | ||
112.j | even | 4 | 2 | 2816.2.c.k | 2 | ||
112.l | odd | 4 | 2 | 2816.2.c.e | 2 | ||
140.c | even | 2 | 1 | 4400.2.a.v | 1 | ||
140.j | odd | 4 | 2 | 4400.2.b.k | 2 | ||
168.e | odd | 2 | 1 | 6336.2.a.i | 1 | ||
168.i | even | 2 | 1 | 6336.2.a.j | 1 | ||
231.h | odd | 2 | 1 | 4356.2.a.j | 1 | ||
308.g | odd | 2 | 1 | 1936.2.a.c | 1 | ||
616.g | odd | 2 | 1 | 7744.2.a.bc | 1 | ||
616.o | even | 2 | 1 | 7744.2.a.m | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
44.2.a.a | ✓ | 1 | 7.b | odd | 2 | 1 | |
176.2.a.a | 1 | 28.d | even | 2 | 1 | ||
396.2.a.c | 1 | 21.c | even | 2 | 1 | ||
484.2.a.a | 1 | 77.b | even | 2 | 1 | ||
484.2.e.a | 4 | 77.j | odd | 10 | 4 | ||
484.2.e.b | 4 | 77.l | even | 10 | 4 | ||
704.2.a.f | 1 | 56.h | odd | 2 | 1 | ||
704.2.a.i | 1 | 56.e | even | 2 | 1 | ||
1100.2.a.b | 1 | 35.c | odd | 2 | 1 | ||
1100.2.b.c | 2 | 35.f | even | 4 | 2 | ||
1584.2.a.p | 1 | 84.h | odd | 2 | 1 | ||
1936.2.a.c | 1 | 308.g | odd | 2 | 1 | ||
2156.2.a.a | 1 | 1.a | even | 1 | 1 | trivial | |
2156.2.i.b | 2 | 7.d | odd | 6 | 2 | ||
2156.2.i.c | 2 | 7.c | even | 3 | 2 | ||
2816.2.c.e | 2 | 112.l | odd | 4 | 2 | ||
2816.2.c.k | 2 | 112.j | even | 4 | 2 | ||
3564.2.i.a | 2 | 63.o | even | 6 | 2 | ||
3564.2.i.j | 2 | 63.l | odd | 6 | 2 | ||
4356.2.a.j | 1 | 231.h | odd | 2 | 1 | ||
4400.2.a.v | 1 | 140.c | even | 2 | 1 | ||
4400.2.b.k | 2 | 140.j | odd | 4 | 2 | ||
6336.2.a.i | 1 | 168.e | odd | 2 | 1 | ||
6336.2.a.j | 1 | 168.i | even | 2 | 1 | ||
7436.2.a.d | 1 | 91.b | odd | 2 | 1 | ||
7744.2.a.m | 1 | 616.o | even | 2 | 1 | ||
7744.2.a.bc | 1 | 616.g | odd | 2 | 1 | ||
8624.2.a.w | 1 | 4.b | odd | 2 | 1 | ||
9900.2.a.h | 1 | 105.g | even | 2 | 1 | ||
9900.2.c.g | 2 | 105.k | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2156))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T + 1 \)
$5$
\( T - 3 \)
$7$
\( T \)
$11$
\( T + 1 \)
$13$
\( T - 4 \)
$17$
\( T + 6 \)
$19$
\( T + 8 \)
$23$
\( T + 3 \)
$29$
\( T \)
$31$
\( T + 5 \)
$37$
\( T + 1 \)
$41$
\( T \)
$43$
\( T + 10 \)
$47$
\( T \)
$53$
\( T + 6 \)
$59$
\( T + 3 \)
$61$
\( T - 4 \)
$67$
\( T + 1 \)
$71$
\( T - 15 \)
$73$
\( T - 4 \)
$79$
\( T - 2 \)
$83$
\( T + 6 \)
$89$
\( T - 9 \)
$97$
\( T - 7 \)
show more
show less