Defining parameters
Level: | \( N \) | \(=\) | \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2156.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 0 | 36 |
Cusp forms | 4 | 0 | 4 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)