Properties

Label 2156.1.m
Level $2156$
Weight $1$
Character orbit 2156.m
Rep. character $\chi_{2156}(1011,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $336$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2156.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 308 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(336\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2156, [\chi])\).

Total New Old
Modular forms 36 20 16
Cusp forms 4 4 0
Eisenstein series 32 16 16

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{4} + 2 q^{9} + O(q^{10}) \) \( 4 q - 2 q^{4} + 2 q^{9} - 2 q^{16} - 4 q^{22} - 2 q^{25} - 4 q^{36} + 4 q^{37} + 4 q^{53} + 4 q^{64} - 2 q^{81} - 4 q^{86} + 2 q^{88} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2156.1.m.a 2156.m 308.m $2$ $1.076$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-77}) \) \(\Q(\sqrt{11}) \) 308.1.g.a \(-1\) \(0\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}+q^{8}-\zeta_{6}^{2}q^{9}+\cdots\)
2156.1.m.b 2156.m 308.m $2$ $1.076$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-77}) \) \(\Q(\sqrt{11}) \) 308.1.g.a \(1\) \(0\) \(0\) \(0\) \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-q^{8}-\zeta_{6}^{2}q^{9}+\cdots\)