Properties

Label 2156.1.k
Level $2156$
Weight $1$
Character orbit 2156.k
Rep. character $\chi_{2156}(373,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $4$
Sturm bound $336$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2156.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(336\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2156, [\chi])\).

Total New Old
Modular forms 82 16 66
Cusp forms 34 16 18
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 8 q^{9} + O(q^{10}) \) \( 16 q - 8 q^{9} - 8 q^{25} - 8 q^{81} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2156.1.k.a 2156.k 77.h $2$ $1.076$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-11}) \) None 44.1.d.a \(0\) \(-1\) \(-1\) \(0\) \(q+\zeta_{6}^{2}q^{3}-\zeta_{6}q^{5}+\zeta_{6}^{2}q^{11}+q^{15}+\cdots\)
2156.1.k.b 2156.k 77.h $2$ $1.076$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-11}) \) None 44.1.d.a \(0\) \(1\) \(1\) \(0\) \(q-\zeta_{6}^{2}q^{3}+\zeta_{6}q^{5}+\zeta_{6}^{2}q^{11}+q^{15}+\cdots\)
2156.1.k.c 2156.k 77.h $4$ $1.076$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-11}) \) None 2156.1.h.b \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{12}+\zeta_{12}^{3})q^{3}+(\zeta_{12}^{3}+\zeta_{12}^{5}+\cdots)q^{5}+\cdots\)
2156.1.k.d 2156.k 77.h $8$ $1.076$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-11}) \) None 2156.1.h.c \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{24}^{9}+\zeta_{24}^{11})q^{3}+(\zeta_{24}^{7}+\zeta_{24}^{9}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 3}\)