Defining parameters
Level: | \( N \) | \(=\) | \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2156.k (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 82 | 16 | 66 |
Cusp forms | 34 | 16 | 18 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2156.1.k.a | $2$ | $1.076$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(-1\) | \(-1\) | \(0\) | \(q+\zeta_{6}^{2}q^{3}-\zeta_{6}q^{5}+\zeta_{6}^{2}q^{11}+q^{15}+\cdots\) |
2156.1.k.b | $2$ | $1.076$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(1\) | \(1\) | \(0\) | \(q-\zeta_{6}^{2}q^{3}+\zeta_{6}q^{5}+\zeta_{6}^{2}q^{11}+q^{15}+\cdots\) |
2156.1.k.c | $4$ | $1.076$ | \(\Q(\zeta_{12})\) | $D_{6}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{12}+\zeta_{12}^{3})q^{3}+(\zeta_{12}^{3}+\zeta_{12}^{5}+\cdots)q^{5}+\cdots\) |
2156.1.k.d | $8$ | $1.076$ | \(\Q(\zeta_{24})\) | $D_{12}$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{24}^{9}+\zeta_{24}^{11})q^{3}+(\zeta_{24}^{7}+\zeta_{24}^{9}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 3}\)