Properties

Label 2156.1.h.c
Level $2156$
Weight $1$
Character orbit 2156.h
Self dual yes
Analytic conductor $1.076$
Analytic rank $0$
Dimension $4$
Projective image $D_{12}$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,1,Mod(197,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.197");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2156.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.07598416724\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{3} q^{5} + (\beta_{2} + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} + \beta_{3} q^{5} + (\beta_{2} + 1) q^{9} - q^{11} + q^{15} - \beta_{2} q^{23} + ( - \beta_{2} + 1) q^{25} + ( - \beta_{3} - 2 \beta_1) q^{27} + \beta_1 q^{31} + \beta_1 q^{33} + q^{37} + ( - \beta_{3} - \beta_1) q^{45} + (\beta_{3} + \beta_1) q^{47} - \beta_{3} q^{55} - \beta_{3} q^{59} + \beta_{2} q^{67} + (\beta_{3} + 2 \beta_1) q^{69} + \beta_{2} q^{71} + (\beta_{3} + \beta_1) q^{75} + (\beta_{2} + 2) q^{81} - \beta_{3} q^{89} + ( - \beta_{2} - 2) q^{93} - \beta_{3} q^{97} + ( - \beta_{2} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{9} - 4 q^{11} + 4 q^{15} + 4 q^{25} + 4 q^{37} + 8 q^{81} - 8 q^{93} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1
1.93185
0.517638
−0.517638
−1.93185
0 −1.93185 0 −0.517638 0 0 0 2.73205 0
197.2 0 −0.517638 0 −1.93185 0 0 0 −0.732051 0
197.3 0 0.517638 0 1.93185 0 0 0 −0.732051 0
197.4 0 1.93185 0 0.517638 0 0 0 2.73205 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
7.b odd 2 1 inner
77.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.1.h.c 4
7.b odd 2 1 inner 2156.1.h.c 4
7.c even 3 2 2156.1.k.d 8
7.d odd 6 2 2156.1.k.d 8
11.b odd 2 1 CM 2156.1.h.c 4
77.b even 2 1 inner 2156.1.h.c 4
77.h odd 6 2 2156.1.k.d 8
77.i even 6 2 2156.1.k.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2156.1.h.c 4 1.a even 1 1 trivial
2156.1.h.c 4 7.b odd 2 1 inner
2156.1.h.c 4 11.b odd 2 1 CM
2156.1.h.c 4 77.b even 2 1 inner
2156.1.k.d 8 7.c even 3 2
2156.1.k.d 8 7.d odd 6 2
2156.1.k.d 8 77.h odd 6 2
2156.1.k.d 8 77.i even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$37$ \( (T - 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$97$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
show more
show less