Properties

Label 2156.1.h.a
Level $2156$
Weight $1$
Character orbit 2156.h
Self dual yes
Analytic conductor $1.076$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2156,1,Mod(197,2156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2156.197");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2156.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.07598416724\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.44.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.664048.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + q^{5}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + q^{5} + q^{11} + q^{15} - q^{23} - q^{27} + q^{31} + q^{33} - q^{37} - 2 q^{47} + 2 q^{53} + q^{55} + q^{59} - q^{67} - q^{69} - q^{71} - q^{81} + q^{89} + q^{93} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2156\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1079\) \(1277\)
\(\chi(n)\) \(1\) \(0\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1
0
0 1.00000 0 1.00000 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2156.1.h.a 1
7.b odd 2 1 44.1.d.a 1
7.c even 3 2 2156.1.k.a 2
7.d odd 6 2 2156.1.k.b 2
11.b odd 2 1 CM 2156.1.h.a 1
21.c even 2 1 396.1.f.a 1
28.d even 2 1 176.1.h.a 1
35.c odd 2 1 1100.1.f.a 1
35.f even 4 2 1100.1.e.a 2
56.e even 2 1 704.1.h.a 1
56.h odd 2 1 704.1.h.b 1
63.l odd 6 2 3564.1.m.b 2
63.o even 6 2 3564.1.m.a 2
77.b even 2 1 44.1.d.a 1
77.h odd 6 2 2156.1.k.a 2
77.i even 6 2 2156.1.k.b 2
77.j odd 10 4 484.1.f.a 4
77.l even 10 4 484.1.f.a 4
84.h odd 2 1 1584.1.j.a 1
112.j even 4 2 2816.1.b.a 2
112.l odd 4 2 2816.1.b.b 2
231.h odd 2 1 396.1.f.a 1
308.g odd 2 1 176.1.h.a 1
308.s odd 10 4 1936.1.n.a 4
308.t even 10 4 1936.1.n.a 4
385.h even 2 1 1100.1.f.a 1
385.l odd 4 2 1100.1.e.a 2
616.g odd 2 1 704.1.h.a 1
616.o even 2 1 704.1.h.b 1
693.u odd 6 2 3564.1.m.a 2
693.bj even 6 2 3564.1.m.b 2
924.n even 2 1 1584.1.j.a 1
1232.u odd 4 2 2816.1.b.a 2
1232.x even 4 2 2816.1.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.1.d.a 1 7.b odd 2 1
44.1.d.a 1 77.b even 2 1
176.1.h.a 1 28.d even 2 1
176.1.h.a 1 308.g odd 2 1
396.1.f.a 1 21.c even 2 1
396.1.f.a 1 231.h odd 2 1
484.1.f.a 4 77.j odd 10 4
484.1.f.a 4 77.l even 10 4
704.1.h.a 1 56.e even 2 1
704.1.h.a 1 616.g odd 2 1
704.1.h.b 1 56.h odd 2 1
704.1.h.b 1 616.o even 2 1
1100.1.e.a 2 35.f even 4 2
1100.1.e.a 2 385.l odd 4 2
1100.1.f.a 1 35.c odd 2 1
1100.1.f.a 1 385.h even 2 1
1584.1.j.a 1 84.h odd 2 1
1584.1.j.a 1 924.n even 2 1
1936.1.n.a 4 308.s odd 10 4
1936.1.n.a 4 308.t even 10 4
2156.1.h.a 1 1.a even 1 1 trivial
2156.1.h.a 1 11.b odd 2 1 CM
2156.1.k.a 2 7.c even 3 2
2156.1.k.a 2 77.h odd 6 2
2156.1.k.b 2 7.d odd 6 2
2156.1.k.b 2 77.i even 6 2
2816.1.b.a 2 112.j even 4 2
2816.1.b.a 2 1232.u odd 4 2
2816.1.b.b 2 112.l odd 4 2
2816.1.b.b 2 1232.x even 4 2
3564.1.m.a 2 63.o even 6 2
3564.1.m.a 2 693.u odd 6 2
3564.1.m.b 2 63.l odd 6 2
3564.1.m.b 2 693.bj even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 1 \) acting on \(S_{1}^{\mathrm{new}}(2156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 2 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T - 1 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 1 \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less