Properties

Label 2156.1.h
Level $2156$
Weight $1$
Character orbit 2156.h
Rep. character $\chi_{2156}(197,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $3$
Sturm bound $336$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2156 = 2^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2156.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(336\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2156, [\chi])\).

Total New Old
Modular forms 43 7 36
Cusp forms 19 7 12
Eisenstein series 24 0 24

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 7 0 0 0

Trace form

\( 7 q + q^{3} + q^{5} + 8 q^{9} + O(q^{10}) \) \( 7 q + q^{3} + q^{5} + 8 q^{9} - q^{11} - q^{15} + q^{23} + 8 q^{25} - q^{27} + q^{31} + q^{33} + q^{37} - 2 q^{47} - 2 q^{53} + q^{55} + q^{59} + q^{67} - q^{69} + q^{71} + 9 q^{81} + q^{89} - q^{93} + q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2156.1.h.a 2156.h 11.b $1$ $1.076$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-11}) \) None 44.1.d.a \(0\) \(1\) \(1\) \(0\) \(q+q^{3}+q^{5}+q^{11}+q^{15}-q^{23}-q^{27}+\cdots\)
2156.1.h.b 2156.h 11.b $2$ $1.076$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-11}) \) None 2156.1.h.b \(0\) \(0\) \(0\) \(0\) \(q-\beta q^{3}+\beta q^{5}+2q^{9}+q^{11}-3q^{15}+\cdots\)
2156.1.h.c 2156.h 11.b $4$ $1.076$ \(\Q(\zeta_{24})^+\) $D_{12}$ \(\Q(\sqrt{-11}) \) None 2156.1.h.c \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{3}+\beta _{3}q^{5}+(1+\beta _{2})q^{9}-q^{11}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2156, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2156, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 3}\)