Newspace parameters
Level: | \( N \) | \(=\) | \( 2151 = 3^{2} \cdot 239 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2151.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.1758214748\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2150.1 | − | 2.75120i | 0 | −5.56908 | − | 1.21173i | 0 | − | 4.92033i | 9.81922i | 0 | −3.33371 | |||||||||||||||
2150.2 | − | 2.75120i | 0 | −5.56908 | − | 1.21173i | 0 | 4.92033i | 9.81922i | 0 | −3.33371 | ||||||||||||||||
2150.3 | − | 2.56329i | 0 | −4.57046 | − | 2.12793i | 0 | − | 2.62545i | 6.58884i | 0 | −5.45450 | |||||||||||||||
2150.4 | − | 2.56329i | 0 | −4.57046 | − | 2.12793i | 0 | 2.62545i | 6.58884i | 0 | −5.45450 | ||||||||||||||||
2150.5 | − | 2.54042i | 0 | −4.45371 | 2.74390i | 0 | − | 3.15846i | 6.23344i | 0 | 6.97064 | ||||||||||||||||
2150.6 | − | 2.54042i | 0 | −4.45371 | 2.74390i | 0 | 3.15846i | 6.23344i | 0 | 6.97064 | |||||||||||||||||
2150.7 | − | 2.53879i | 0 | −4.44547 | 1.00261i | 0 | − | 0.202697i | 6.20855i | 0 | 2.54543 | ||||||||||||||||
2150.8 | − | 2.53879i | 0 | −4.44547 | 1.00261i | 0 | 0.202697i | 6.20855i | 0 | 2.54543 | |||||||||||||||||
2150.9 | − | 2.23937i | 0 | −3.01478 | 3.12574i | 0 | − | 3.32975i | 2.27247i | 0 | 6.99969 | ||||||||||||||||
2150.10 | − | 2.23937i | 0 | −3.01478 | 3.12574i | 0 | 3.32975i | 2.27247i | 0 | 6.99969 | |||||||||||||||||
2150.11 | − | 2.14709i | 0 | −2.61000 | 2.81441i | 0 | − | 1.25298i | 1.30973i | 0 | 6.04279 | ||||||||||||||||
2150.12 | − | 2.14709i | 0 | −2.61000 | 2.81441i | 0 | 1.25298i | 1.30973i | 0 | 6.04279 | |||||||||||||||||
2150.13 | − | 2.04427i | 0 | −2.17903 | − | 3.47846i | 0 | − | 3.44491i | 0.365980i | 0 | −7.11089 | |||||||||||||||
2150.14 | − | 2.04427i | 0 | −2.17903 | − | 3.47846i | 0 | 3.44491i | 0.365980i | 0 | −7.11089 | ||||||||||||||||
2150.15 | − | 1.83893i | 0 | −1.38165 | − | 0.488895i | 0 | − | 1.94727i | − | 1.13709i | 0 | −0.899043 | ||||||||||||||
2150.16 | − | 1.83893i | 0 | −1.38165 | − | 0.488895i | 0 | 1.94727i | − | 1.13709i | 0 | −0.899043 | |||||||||||||||
2150.17 | − | 1.79525i | 0 | −1.22293 | − | 1.07382i | 0 | − | 2.61327i | − | 1.39503i | 0 | −1.92778 | ||||||||||||||
2150.18 | − | 1.79525i | 0 | −1.22293 | − | 1.07382i | 0 | 2.61327i | − | 1.39503i | 0 | −1.92778 | |||||||||||||||
2150.19 | − | 1.73293i | 0 | −1.00304 | − | 1.48937i | 0 | − | 1.62864i | − | 1.72766i | 0 | −2.58096 | ||||||||||||||
2150.20 | − | 1.73293i | 0 | −1.00304 | − | 1.48937i | 0 | 1.62864i | − | 1.72766i | 0 | −2.58096 | |||||||||||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
239.b | odd | 2 | 1 | inner |
717.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2151.2.b.a | ✓ | 80 |
3.b | odd | 2 | 1 | inner | 2151.2.b.a | ✓ | 80 |
239.b | odd | 2 | 1 | inner | 2151.2.b.a | ✓ | 80 |
717.b | even | 2 | 1 | inner | 2151.2.b.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2151.2.b.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
2151.2.b.a | ✓ | 80 | 3.b | odd | 2 | 1 | inner |
2151.2.b.a | ✓ | 80 | 239.b | odd | 2 | 1 | inner |
2151.2.b.a | ✓ | 80 | 717.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(2151, [\chi])\).