Properties

Label 2150.2.b.o
Level 2150
Weight 2
Character orbit 2150.b
Analytic conductor 17.168
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2150 = 2 \cdot 5^{2} \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(17.1678364346\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 430)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{8}^{2} q^{2} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{3} - q^{4} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{6} -\zeta_{8}^{2} q^{7} + \zeta_{8}^{2} q^{8} + q^{9} +O(q^{10})\) \( q -\zeta_{8}^{2} q^{2} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{3} - q^{4} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{6} -\zeta_{8}^{2} q^{7} + \zeta_{8}^{2} q^{8} + q^{9} + ( 2 - \zeta_{8} + \zeta_{8}^{3} ) q^{11} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{12} + ( -2 \zeta_{8} + \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{13} - q^{14} + q^{16} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{17} -\zeta_{8}^{2} q^{18} + q^{19} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{21} + ( \zeta_{8} - 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{22} + ( -5 \zeta_{8} + 2 \zeta_{8}^{2} - 5 \zeta_{8}^{3} ) q^{23} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{24} + ( 1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{26} + ( 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{27} + \zeta_{8}^{2} q^{28} + ( 3 - 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{29} + ( 1 - \zeta_{8} + \zeta_{8}^{3} ) q^{31} -\zeta_{8}^{2} q^{32} + ( 2 \zeta_{8} - 2 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{33} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{34} - q^{36} + ( -3 \zeta_{8} + 2 \zeta_{8}^{2} - 3 \zeta_{8}^{3} ) q^{37} -\zeta_{8}^{2} q^{38} + ( 4 - \zeta_{8} + \zeta_{8}^{3} ) q^{39} + ( 1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{41} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{42} + \zeta_{8}^{2} q^{43} + ( -2 + \zeta_{8} - \zeta_{8}^{3} ) q^{44} + ( 2 - 5 \zeta_{8} + 5 \zeta_{8}^{3} ) q^{46} + ( -5 \zeta_{8} - 5 \zeta_{8}^{3} ) q^{47} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{48} + 6 q^{49} + 2 q^{51} + ( 2 \zeta_{8} - \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{52} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{53} + ( 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{54} + q^{56} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{57} + ( 3 \zeta_{8} - 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{58} + ( 4 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{59} + ( -7 + 5 \zeta_{8} - 5 \zeta_{8}^{3} ) q^{61} + ( \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{62} -\zeta_{8}^{2} q^{63} - q^{64} + ( -2 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{66} + ( 3 \zeta_{8} - 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{67} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{68} + ( 10 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{69} + ( 2 + 7 \zeta_{8} - 7 \zeta_{8}^{3} ) q^{71} + \zeta_{8}^{2} q^{72} + ( -3 \zeta_{8} - 5 \zeta_{8}^{2} - 3 \zeta_{8}^{3} ) q^{73} + ( 2 - 3 \zeta_{8} + 3 \zeta_{8}^{3} ) q^{74} - q^{76} + ( \zeta_{8} - 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{77} + ( \zeta_{8} - 4 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{78} + ( 7 + \zeta_{8} - \zeta_{8}^{3} ) q^{79} -5 q^{81} + ( 2 \zeta_{8} - \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{82} + ( 4 \zeta_{8} - 2 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{83} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{84} + q^{86} + ( 3 \zeta_{8} - 6 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{87} + ( -\zeta_{8} + 2 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{88} + ( 2 + 5 \zeta_{8} - 5 \zeta_{8}^{3} ) q^{89} + ( 1 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{91} + ( 5 \zeta_{8} - 2 \zeta_{8}^{2} + 5 \zeta_{8}^{3} ) q^{92} + ( \zeta_{8} - 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{93} + ( -5 \zeta_{8} + 5 \zeta_{8}^{3} ) q^{94} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{96} + ( -11 \zeta_{8} + 2 \zeta_{8}^{2} - 11 \zeta_{8}^{3} ) q^{97} -6 \zeta_{8}^{2} q^{98} + ( 2 - \zeta_{8} + \zeta_{8}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} + 4q^{9} + O(q^{10}) \) \( 4q - 4q^{4} + 4q^{9} + 8q^{11} - 4q^{14} + 4q^{16} + 4q^{19} + 4q^{26} + 12q^{29} + 4q^{31} - 4q^{36} + 16q^{39} + 4q^{41} - 8q^{44} + 8q^{46} + 24q^{49} + 8q^{51} + 4q^{56} + 16q^{59} - 28q^{61} - 4q^{64} - 8q^{66} + 40q^{69} + 8q^{71} + 8q^{74} - 4q^{76} + 28q^{79} - 20q^{81} + 4q^{86} + 8q^{89} + 4q^{91} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2150\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(1551\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1549.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
1.00000i 1.41421i −1.00000 0 −1.41421 1.00000i 1.00000i 1.00000 0
1549.2 1.00000i 1.41421i −1.00000 0 1.41421 1.00000i 1.00000i 1.00000 0
1549.3 1.00000i 1.41421i −1.00000 0 1.41421 1.00000i 1.00000i 1.00000 0
1549.4 1.00000i 1.41421i −1.00000 0 −1.41421 1.00000i 1.00000i 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2150.2.b.o 4
5.b even 2 1 inner 2150.2.b.o 4
5.c odd 4 1 430.2.a.g 2
5.c odd 4 1 2150.2.a.v 2
15.e even 4 1 3870.2.a.bc 2
20.e even 4 1 3440.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
430.2.a.g 2 5.c odd 4 1
2150.2.a.v 2 5.c odd 4 1
2150.2.b.o 4 1.a even 1 1 trivial
2150.2.b.o 4 5.b even 2 1 inner
3440.2.a.j 2 20.e even 4 1
3870.2.a.bc 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2150, [\chi])\):

\( T_{3}^{2} + 2 \)
\( T_{7}^{2} + 1 \)
\( T_{11}^{2} - 4 T_{11} + 2 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T^{2} )^{2} \)
$3$ \( ( 1 - 4 T^{2} + 9 T^{4} )^{2} \)
$5$ \( \)
$7$ \( ( 1 - 13 T^{2} + 49 T^{4} )^{2} \)
$11$ \( ( 1 - 4 T + 24 T^{2} - 44 T^{3} + 121 T^{4} )^{2} \)
$13$ \( 1 - 34 T^{2} + 595 T^{4} - 5746 T^{6} + 28561 T^{8} \)
$17$ \( ( 1 - 32 T^{2} + 289 T^{4} )^{2} \)
$19$ \( ( 1 - T + 19 T^{2} )^{4} \)
$23$ \( 1 + 16 T^{2} + 322 T^{4} + 8464 T^{6} + 279841 T^{8} \)
$29$ \( ( 1 - 6 T + 49 T^{2} - 174 T^{3} + 841 T^{4} )^{2} \)
$31$ \( ( 1 - 2 T + 61 T^{2} - 62 T^{3} + 961 T^{4} )^{2} \)
$37$ \( 1 - 104 T^{2} + 5154 T^{4} - 142376 T^{6} + 1874161 T^{8} \)
$41$ \( ( 1 - 2 T + 75 T^{2} - 82 T^{3} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 + T^{2} )^{2} \)
$47$ \( ( 1 - 44 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 - 74 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 - 8 T + 126 T^{2} - 472 T^{3} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 + 14 T + 121 T^{2} + 854 T^{3} + 3721 T^{4} )^{2} \)
$67$ \( 1 - 214 T^{2} + 19779 T^{4} - 960646 T^{6} + 20151121 T^{8} \)
$71$ \( ( 1 - 4 T + 48 T^{2} - 284 T^{3} + 5041 T^{4} )^{2} \)
$73$ \( 1 - 206 T^{2} + 19467 T^{4} - 1097774 T^{6} + 28398241 T^{8} \)
$79$ \( ( 1 - 14 T + 205 T^{2} - 1106 T^{3} + 6241 T^{4} )^{2} \)
$83$ \( 1 - 260 T^{2} + 30166 T^{4} - 1791140 T^{6} + 47458321 T^{8} \)
$89$ \( ( 1 - 4 T + 132 T^{2} - 356 T^{3} + 7921 T^{4} )^{2} \)
$97$ \( 1 + 104 T^{2} + 17650 T^{4} + 978536 T^{6} + 88529281 T^{8} \)
show more
show less