Defining parameters
| Level: | \( N \) | \(=\) | \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2142.cr (of order \(24\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 119 \) |
| Character field: | \(\Q(\zeta_{24})\) | ||
| Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2142, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 10496 | 1440 | 9056 |
| Cusp forms | 10240 | 1440 | 8800 |
| Eisenstein series | 256 | 0 | 256 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)