Properties

Label 2142.4.cr
Level $2142$
Weight $4$
Character orbit 2142.cr
Rep. character $\chi_{2142}(739,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $1440$
Sturm bound $1728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2142.cr (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(1728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2142, [\chi])\).

Total New Old
Modular forms 10496 1440 9056
Cusp forms 10240 1440 8800
Eisenstein series 256 0 256

Trace form

\( 1440 q + 32 q^{5} + 112 q^{11} + 80 q^{14} + 11520 q^{16} + 8 q^{17} - 224 q^{22} - 336 q^{23} + 448 q^{25} - 128 q^{28} + 496 q^{35} - 96 q^{37} + 1408 q^{41} - 1248 q^{43} - 128 q^{44} - 1344 q^{46} + 3640 q^{49}+ \cdots - 9216 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)