Properties

Label 2142.4.a.p
Level $2142$
Weight $4$
Character orbit 2142.a
Self dual yes
Analytic conductor $126.382$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,4,Mod(1,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2142.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,0,12,15,0,-21,-24,0,-30,108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.382091232\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3221.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + (2 \beta_{2} + 3 \beta_1 + 4) q^{5} - 7 q^{7} - 8 q^{8} + ( - 4 \beta_{2} - 6 \beta_1 - 8) q^{10} + ( - 2 \beta_{2} + 6 \beta_1 + 34) q^{11} + ( - 8 \beta_{2} + 16 \beta_1 - 4) q^{13}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 12 q^{4} + 15 q^{5} - 21 q^{7} - 24 q^{8} - 30 q^{10} + 108 q^{11} + 4 q^{13} + 42 q^{14} + 48 q^{16} + 51 q^{17} - 32 q^{19} + 60 q^{20} - 216 q^{22} + 280 q^{23} + 64 q^{25} - 8 q^{26}+ \cdots - 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 9x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.218090
−2.66246
3.44437
−2.00000 0 4.00000 −7.68678 0 −7.00000 −8.00000 0 15.3736
1.2 −2.00000 0 4.00000 3.51497 0 −7.00000 −8.00000 0 −7.02995
1.3 −2.00000 0 4.00000 19.1718 0 −7.00000 −8.00000 0 −38.3436
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2142.4.a.p 3
3.b odd 2 1 238.4.a.e 3
12.b even 2 1 1904.4.a.h 3
21.c even 2 1 1666.4.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
238.4.a.e 3 3.b odd 2 1
1666.4.a.i 3 21.c even 2 1
1904.4.a.h 3 12.b even 2 1
2142.4.a.p 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2142))\):

\( T_{5}^{3} - 15T_{5}^{2} - 107T_{5} + 518 \) Copy content Toggle raw display
\( T_{11}^{3} - 108T_{11}^{2} + 3400T_{11} - 24984 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 15 T^{2} + \cdots + 518 \) Copy content Toggle raw display
$7$ \( (T + 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 108 T^{2} + \cdots - 24984 \) Copy content Toggle raw display
$13$ \( T^{3} - 4 T^{2} + \cdots + 118848 \) Copy content Toggle raw display
$17$ \( (T - 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 32 T^{2} + \cdots - 1001448 \) Copy content Toggle raw display
$23$ \( T^{3} - 280 T^{2} + \cdots + 732256 \) Copy content Toggle raw display
$29$ \( T^{3} - 502 T^{2} + \cdots - 335328 \) Copy content Toggle raw display
$31$ \( T^{3} + 5 T^{2} + \cdots - 3642856 \) Copy content Toggle raw display
$37$ \( T^{3} + 118 T^{2} + \cdots - 10746224 \) Copy content Toggle raw display
$41$ \( T^{3} + 257 T^{2} + \cdots - 25764042 \) Copy content Toggle raw display
$43$ \( T^{3} + 193 T^{2} + \cdots + 103764 \) Copy content Toggle raw display
$47$ \( T^{3} + 304 T^{2} + \cdots - 70336896 \) Copy content Toggle raw display
$53$ \( T^{3} - 721 T^{2} + \cdots + 88335518 \) Copy content Toggle raw display
$59$ \( T^{3} + 418 T^{2} + \cdots - 131279904 \) Copy content Toggle raw display
$61$ \( T^{3} + 185 T^{2} + \cdots + 53552406 \) Copy content Toggle raw display
$67$ \( T^{3} - 327 T^{2} + \cdots - 24541488 \) Copy content Toggle raw display
$71$ \( T^{3} - 818 T^{2} + \cdots + 611148048 \) Copy content Toggle raw display
$73$ \( T^{3} - 531 T^{2} + \cdots + 27702 \) Copy content Toggle raw display
$79$ \( T^{3} - 808 T^{2} + \cdots + 351828032 \) Copy content Toggle raw display
$83$ \( T^{3} + 536 T^{2} + \cdots - 243995864 \) Copy content Toggle raw display
$89$ \( T^{3} + 1254 T^{2} + \cdots - 611140576 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 1011312386 \) Copy content Toggle raw display
show more
show less