Properties

Label 2142.4.a.l.1.2
Level $2142$
Weight $4$
Character 2142.1
Self dual yes
Analytic conductor $126.382$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,4,Mod(1,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2142.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,0,8,-9,0,-14,16,0,-18,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.382091232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{93}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.32183\) of defining polynomial
Character \(\chi\) \(=\) 2142.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} +0.321825 q^{5} -7.00000 q^{7} +8.00000 q^{8} +0.643651 q^{10} -36.5746 q^{11} +24.5746 q^{13} -14.0000 q^{14} +16.0000 q^{16} -17.0000 q^{17} +25.2873 q^{19} +1.28730 q^{20} -73.1492 q^{22} -34.6437 q^{23} -124.896 q^{25} +49.1492 q^{26} -28.0000 q^{28} +239.011 q^{29} +224.689 q^{31} +32.0000 q^{32} -34.0000 q^{34} -2.25278 q^{35} -314.298 q^{37} +50.5746 q^{38} +2.57460 q^{40} +194.747 q^{41} -367.206 q^{43} -146.298 q^{44} -69.2873 q^{46} +415.931 q^{47} +49.0000 q^{49} -249.793 q^{50} +98.2984 q^{52} +293.173 q^{53} -11.7706 q^{55} -56.0000 q^{56} +478.022 q^{58} -148.000 q^{59} +163.206 q^{61} +449.379 q^{62} +64.0000 q^{64} +7.90873 q^{65} +469.769 q^{67} -68.0000 q^{68} -4.50556 q^{70} -30.8508 q^{71} +511.758 q^{73} -628.597 q^{74} +101.149 q^{76} +256.022 q^{77} +391.102 q^{79} +5.14921 q^{80} +389.494 q^{82} +940.848 q^{83} -5.47103 q^{85} -734.412 q^{86} -292.597 q^{88} +642.229 q^{89} -172.022 q^{91} -138.575 q^{92} +831.862 q^{94} +8.13810 q^{95} -983.079 q^{97} +98.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 8 q^{4} - 9 q^{5} - 14 q^{7} + 16 q^{8} - 18 q^{10} + 4 q^{11} - 28 q^{13} - 28 q^{14} + 32 q^{16} - 34 q^{17} + 12 q^{19} - 36 q^{20} + 8 q^{22} - 50 q^{23} - 163 q^{25} - 56 q^{26} - 56 q^{28}+ \cdots + 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0.321825 0.0287849 0.0143925 0.999896i \(-0.495419\pi\)
0.0143925 + 0.999896i \(0.495419\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 0.643651 0.0203540
\(11\) −36.5746 −1.00251 −0.501257 0.865298i \(-0.667129\pi\)
−0.501257 + 0.865298i \(0.667129\pi\)
\(12\) 0 0
\(13\) 24.5746 0.524290 0.262145 0.965029i \(-0.415570\pi\)
0.262145 + 0.965029i \(0.415570\pi\)
\(14\) −14.0000 −0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) 25.2873 0.305332 0.152666 0.988278i \(-0.451214\pi\)
0.152666 + 0.988278i \(0.451214\pi\)
\(20\) 1.28730 0.0143925
\(21\) 0 0
\(22\) −73.1492 −0.708885
\(23\) −34.6437 −0.314074 −0.157037 0.987593i \(-0.550194\pi\)
−0.157037 + 0.987593i \(0.550194\pi\)
\(24\) 0 0
\(25\) −124.896 −0.999171
\(26\) 49.1492 0.370729
\(27\) 0 0
\(28\) −28.0000 −0.188982
\(29\) 239.011 1.53046 0.765228 0.643759i \(-0.222626\pi\)
0.765228 + 0.643759i \(0.222626\pi\)
\(30\) 0 0
\(31\) 224.689 1.30179 0.650893 0.759169i \(-0.274395\pi\)
0.650893 + 0.759169i \(0.274395\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −34.0000 −0.171499
\(35\) −2.25278 −0.0108797
\(36\) 0 0
\(37\) −314.298 −1.39650 −0.698248 0.715856i \(-0.746037\pi\)
−0.698248 + 0.715856i \(0.746037\pi\)
\(38\) 50.5746 0.215902
\(39\) 0 0
\(40\) 2.57460 0.0101770
\(41\) 194.747 0.741815 0.370907 0.928670i \(-0.379047\pi\)
0.370907 + 0.928670i \(0.379047\pi\)
\(42\) 0 0
\(43\) −367.206 −1.30229 −0.651144 0.758954i \(-0.725711\pi\)
−0.651144 + 0.758954i \(0.725711\pi\)
\(44\) −146.298 −0.501257
\(45\) 0 0
\(46\) −69.2873 −0.222084
\(47\) 415.931 1.29085 0.645423 0.763825i \(-0.276681\pi\)
0.645423 + 0.763825i \(0.276681\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −249.793 −0.706521
\(51\) 0 0
\(52\) 98.2984 0.262145
\(53\) 293.173 0.759818 0.379909 0.925024i \(-0.375955\pi\)
0.379909 + 0.925024i \(0.375955\pi\)
\(54\) 0 0
\(55\) −11.7706 −0.0288573
\(56\) −56.0000 −0.133631
\(57\) 0 0
\(58\) 478.022 1.08220
\(59\) −148.000 −0.326576 −0.163288 0.986578i \(-0.552210\pi\)
−0.163288 + 0.986578i \(0.552210\pi\)
\(60\) 0 0
\(61\) 163.206 0.342564 0.171282 0.985222i \(-0.445209\pi\)
0.171282 + 0.985222i \(0.445209\pi\)
\(62\) 449.379 0.920502
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 7.90873 0.0150917
\(66\) 0 0
\(67\) 469.769 0.856589 0.428295 0.903639i \(-0.359115\pi\)
0.428295 + 0.903639i \(0.359115\pi\)
\(68\) −68.0000 −0.121268
\(69\) 0 0
\(70\) −4.50556 −0.00769310
\(71\) −30.8508 −0.0515678 −0.0257839 0.999668i \(-0.508208\pi\)
−0.0257839 + 0.999668i \(0.508208\pi\)
\(72\) 0 0
\(73\) 511.758 0.820504 0.410252 0.911972i \(-0.365441\pi\)
0.410252 + 0.911972i \(0.365441\pi\)
\(74\) −628.597 −0.987472
\(75\) 0 0
\(76\) 101.149 0.152666
\(77\) 256.022 0.378915
\(78\) 0 0
\(79\) 391.102 0.556993 0.278497 0.960437i \(-0.410164\pi\)
0.278497 + 0.960437i \(0.410164\pi\)
\(80\) 5.14921 0.00719623
\(81\) 0 0
\(82\) 389.494 0.524542
\(83\) 940.848 1.24424 0.622118 0.782924i \(-0.286273\pi\)
0.622118 + 0.782924i \(0.286273\pi\)
\(84\) 0 0
\(85\) −5.47103 −0.00698137
\(86\) −734.412 −0.920857
\(87\) 0 0
\(88\) −292.597 −0.354442
\(89\) 642.229 0.764901 0.382450 0.923976i \(-0.375080\pi\)
0.382450 + 0.923976i \(0.375080\pi\)
\(90\) 0 0
\(91\) −172.022 −0.198163
\(92\) −138.575 −0.157037
\(93\) 0 0
\(94\) 831.862 0.912766
\(95\) 8.13810 0.00878896
\(96\) 0 0
\(97\) −983.079 −1.02904 −0.514518 0.857479i \(-0.672029\pi\)
−0.514518 + 0.857479i \(0.672029\pi\)
\(98\) 98.0000 0.101015
\(99\) 0 0
\(100\) −499.586 −0.499586
\(101\) −1254.34 −1.23576 −0.617880 0.786272i \(-0.712008\pi\)
−0.617880 + 0.786272i \(0.712008\pi\)
\(102\) 0 0
\(103\) 58.7817 0.0562324 0.0281162 0.999605i \(-0.491049\pi\)
0.0281162 + 0.999605i \(0.491049\pi\)
\(104\) 196.597 0.185364
\(105\) 0 0
\(106\) 586.345 0.537272
\(107\) 1297.17 1.17198 0.585992 0.810317i \(-0.300705\pi\)
0.585992 + 0.810317i \(0.300705\pi\)
\(108\) 0 0
\(109\) 830.232 0.729558 0.364779 0.931094i \(-0.381145\pi\)
0.364779 + 0.931094i \(0.381145\pi\)
\(110\) −23.5413 −0.0204052
\(111\) 0 0
\(112\) −112.000 −0.0944911
\(113\) 308.345 0.256696 0.128348 0.991729i \(-0.459033\pi\)
0.128348 + 0.991729i \(0.459033\pi\)
\(114\) 0 0
\(115\) −11.1492 −0.00904060
\(116\) 956.044 0.765228
\(117\) 0 0
\(118\) −296.000 −0.230924
\(119\) 119.000 0.0916698
\(120\) 0 0
\(121\) 6.70159 0.00503500
\(122\) 326.412 0.242229
\(123\) 0 0
\(124\) 898.757 0.650893
\(125\) −80.4230 −0.0575460
\(126\) 0 0
\(127\) −1165.86 −0.814592 −0.407296 0.913296i \(-0.633528\pi\)
−0.407296 + 0.913296i \(0.633528\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 15.8175 0.0106714
\(131\) 1202.80 0.802208 0.401104 0.916032i \(-0.368627\pi\)
0.401104 + 0.916032i \(0.368627\pi\)
\(132\) 0 0
\(133\) −177.011 −0.115405
\(134\) 939.539 0.605700
\(135\) 0 0
\(136\) −136.000 −0.0857493
\(137\) 2658.90 1.65814 0.829071 0.559144i \(-0.188870\pi\)
0.829071 + 0.559144i \(0.188870\pi\)
\(138\) 0 0
\(139\) 989.607 0.603866 0.301933 0.953329i \(-0.402368\pi\)
0.301933 + 0.953329i \(0.402368\pi\)
\(140\) −9.01111 −0.00543984
\(141\) 0 0
\(142\) −61.7016 −0.0364640
\(143\) −898.806 −0.525608
\(144\) 0 0
\(145\) 76.9198 0.0440541
\(146\) 1023.52 0.580184
\(147\) 0 0
\(148\) −1257.19 −0.698248
\(149\) 3297.39 1.81297 0.906485 0.422238i \(-0.138755\pi\)
0.906485 + 0.422238i \(0.138755\pi\)
\(150\) 0 0
\(151\) 778.865 0.419756 0.209878 0.977728i \(-0.432693\pi\)
0.209878 + 0.977728i \(0.432693\pi\)
\(152\) 202.298 0.107951
\(153\) 0 0
\(154\) 512.044 0.267933
\(155\) 72.3107 0.0374718
\(156\) 0 0
\(157\) −439.492 −0.223409 −0.111705 0.993741i \(-0.535631\pi\)
−0.111705 + 0.993741i \(0.535631\pi\)
\(158\) 782.205 0.393854
\(159\) 0 0
\(160\) 10.2984 0.00508851
\(161\) 242.506 0.118709
\(162\) 0 0
\(163\) 1936.59 0.930586 0.465293 0.885157i \(-0.345949\pi\)
0.465293 + 0.885157i \(0.345949\pi\)
\(164\) 778.989 0.370907
\(165\) 0 0
\(166\) 1881.70 0.879807
\(167\) 953.023 0.441600 0.220800 0.975319i \(-0.429133\pi\)
0.220800 + 0.975319i \(0.429133\pi\)
\(168\) 0 0
\(169\) −1593.09 −0.725120
\(170\) −10.9421 −0.00493658
\(171\) 0 0
\(172\) −1468.82 −0.651144
\(173\) 87.4179 0.0384177 0.0192088 0.999815i \(-0.493885\pi\)
0.0192088 + 0.999815i \(0.493885\pi\)
\(174\) 0 0
\(175\) 874.275 0.377651
\(176\) −585.194 −0.250629
\(177\) 0 0
\(178\) 1284.46 0.540867
\(179\) −4657.04 −1.94460 −0.972299 0.233738i \(-0.924904\pi\)
−0.972299 + 0.233738i \(0.924904\pi\)
\(180\) 0 0
\(181\) 445.724 0.183041 0.0915204 0.995803i \(-0.470827\pi\)
0.0915204 + 0.995803i \(0.470827\pi\)
\(182\) −344.044 −0.140122
\(183\) 0 0
\(184\) −277.149 −0.111042
\(185\) −101.149 −0.0401980
\(186\) 0 0
\(187\) 621.768 0.243145
\(188\) 1663.72 0.645423
\(189\) 0 0
\(190\) 16.2762 0.00621473
\(191\) 3758.78 1.42396 0.711978 0.702202i \(-0.247800\pi\)
0.711978 + 0.702202i \(0.247800\pi\)
\(192\) 0 0
\(193\) −1783.24 −0.665079 −0.332540 0.943089i \(-0.607906\pi\)
−0.332540 + 0.943089i \(0.607906\pi\)
\(194\) −1966.16 −0.727639
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −979.394 −0.354208 −0.177104 0.984192i \(-0.556673\pi\)
−0.177104 + 0.984192i \(0.556673\pi\)
\(198\) 0 0
\(199\) −3357.70 −1.19609 −0.598044 0.801464i \(-0.704055\pi\)
−0.598044 + 0.801464i \(0.704055\pi\)
\(200\) −999.171 −0.353260
\(201\) 0 0
\(202\) −2508.69 −0.873814
\(203\) −1673.08 −0.578458
\(204\) 0 0
\(205\) 62.6746 0.0213531
\(206\) 117.563 0.0397623
\(207\) 0 0
\(208\) 393.194 0.131072
\(209\) −924.873 −0.306100
\(210\) 0 0
\(211\) 2802.83 0.914478 0.457239 0.889344i \(-0.348838\pi\)
0.457239 + 0.889344i \(0.348838\pi\)
\(212\) 1172.69 0.379909
\(213\) 0 0
\(214\) 2594.34 0.828718
\(215\) −118.176 −0.0374863
\(216\) 0 0
\(217\) −1572.82 −0.492029
\(218\) 1660.46 0.515875
\(219\) 0 0
\(220\) −47.0825 −0.0144287
\(221\) −417.768 −0.127159
\(222\) 0 0
\(223\) −569.149 −0.170911 −0.0854553 0.996342i \(-0.527234\pi\)
−0.0854553 + 0.996342i \(0.527234\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) 616.690 0.181512
\(227\) 6224.90 1.82009 0.910047 0.414505i \(-0.136045\pi\)
0.910047 + 0.414505i \(0.136045\pi\)
\(228\) 0 0
\(229\) −2936.16 −0.847278 −0.423639 0.905831i \(-0.639247\pi\)
−0.423639 + 0.905831i \(0.639247\pi\)
\(230\) −22.2984 −0.00639267
\(231\) 0 0
\(232\) 1912.09 0.541098
\(233\) 2085.27 0.586311 0.293156 0.956065i \(-0.405295\pi\)
0.293156 + 0.956065i \(0.405295\pi\)
\(234\) 0 0
\(235\) 133.857 0.0371569
\(236\) −592.000 −0.163288
\(237\) 0 0
\(238\) 238.000 0.0648204
\(239\) 4271.33 1.15602 0.578012 0.816028i \(-0.303829\pi\)
0.578012 + 0.816028i \(0.303829\pi\)
\(240\) 0 0
\(241\) −144.317 −0.0385738 −0.0192869 0.999814i \(-0.506140\pi\)
−0.0192869 + 0.999814i \(0.506140\pi\)
\(242\) 13.4032 0.00356028
\(243\) 0 0
\(244\) 652.824 0.171282
\(245\) 15.7694 0.00411213
\(246\) 0 0
\(247\) 621.425 0.160082
\(248\) 1797.51 0.460251
\(249\) 0 0
\(250\) −160.846 −0.0406912
\(251\) 2104.09 0.529119 0.264560 0.964369i \(-0.414773\pi\)
0.264560 + 0.964369i \(0.414773\pi\)
\(252\) 0 0
\(253\) 1267.08 0.314864
\(254\) −2331.72 −0.576004
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2675.34 0.649351 0.324676 0.945825i \(-0.394745\pi\)
0.324676 + 0.945825i \(0.394745\pi\)
\(258\) 0 0
\(259\) 2200.09 0.527826
\(260\) 31.6349 0.00754583
\(261\) 0 0
\(262\) 2405.60 0.567247
\(263\) 166.397 0.0390132 0.0195066 0.999810i \(-0.493790\pi\)
0.0195066 + 0.999810i \(0.493790\pi\)
\(264\) 0 0
\(265\) 94.3504 0.0218713
\(266\) −354.022 −0.0816034
\(267\) 0 0
\(268\) 1879.08 0.428295
\(269\) −8052.60 −1.82519 −0.912594 0.408866i \(-0.865924\pi\)
−0.912594 + 0.408866i \(0.865924\pi\)
\(270\) 0 0
\(271\) −1858.91 −0.416681 −0.208340 0.978056i \(-0.566806\pi\)
−0.208340 + 0.978056i \(0.566806\pi\)
\(272\) −272.000 −0.0606339
\(273\) 0 0
\(274\) 5317.81 1.17248
\(275\) 4568.04 1.00168
\(276\) 0 0
\(277\) 3211.52 0.696611 0.348306 0.937381i \(-0.386757\pi\)
0.348306 + 0.937381i \(0.386757\pi\)
\(278\) 1979.21 0.426998
\(279\) 0 0
\(280\) −18.0222 −0.00384655
\(281\) −863.925 −0.183407 −0.0917036 0.995786i \(-0.529231\pi\)
−0.0917036 + 0.995786i \(0.529231\pi\)
\(282\) 0 0
\(283\) 8971.90 1.88454 0.942269 0.334858i \(-0.108688\pi\)
0.942269 + 0.334858i \(0.108688\pi\)
\(284\) −123.403 −0.0257839
\(285\) 0 0
\(286\) −1797.61 −0.371661
\(287\) −1363.23 −0.280380
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 153.840 0.0311510
\(291\) 0 0
\(292\) 2047.03 0.410252
\(293\) −1972.88 −0.393367 −0.196684 0.980467i \(-0.563017\pi\)
−0.196684 + 0.980467i \(0.563017\pi\)
\(294\) 0 0
\(295\) −47.6302 −0.00940046
\(296\) −2514.39 −0.493736
\(297\) 0 0
\(298\) 6594.78 1.28196
\(299\) −851.354 −0.164666
\(300\) 0 0
\(301\) 2570.44 0.492219
\(302\) 1557.73 0.296812
\(303\) 0 0
\(304\) 404.597 0.0763330
\(305\) 52.5238 0.00986067
\(306\) 0 0
\(307\) 6751.99 1.25523 0.627616 0.778523i \(-0.284031\pi\)
0.627616 + 0.778523i \(0.284031\pi\)
\(308\) 1024.09 0.189457
\(309\) 0 0
\(310\) 144.621 0.0264966
\(311\) −5372.74 −0.979615 −0.489807 0.871831i \(-0.662933\pi\)
−0.489807 + 0.871831i \(0.662933\pi\)
\(312\) 0 0
\(313\) 7540.67 1.36174 0.680868 0.732406i \(-0.261603\pi\)
0.680868 + 0.732406i \(0.261603\pi\)
\(314\) −878.984 −0.157974
\(315\) 0 0
\(316\) 1564.41 0.278497
\(317\) −3660.08 −0.648488 −0.324244 0.945973i \(-0.605110\pi\)
−0.324244 + 0.945973i \(0.605110\pi\)
\(318\) 0 0
\(319\) −8741.74 −1.53430
\(320\) 20.5968 0.00359812
\(321\) 0 0
\(322\) 485.011 0.0839398
\(323\) −429.884 −0.0740538
\(324\) 0 0
\(325\) −3069.28 −0.523855
\(326\) 3873.18 0.658024
\(327\) 0 0
\(328\) 1557.98 0.262271
\(329\) −2911.52 −0.487894
\(330\) 0 0
\(331\) 86.2655 0.0143250 0.00716251 0.999974i \(-0.497720\pi\)
0.00716251 + 0.999974i \(0.497720\pi\)
\(332\) 3763.39 0.622118
\(333\) 0 0
\(334\) 1906.05 0.312258
\(335\) 151.184 0.0246569
\(336\) 0 0
\(337\) −4028.19 −0.651126 −0.325563 0.945520i \(-0.605554\pi\)
−0.325563 + 0.945520i \(0.605554\pi\)
\(338\) −3186.18 −0.512737
\(339\) 0 0
\(340\) −21.8841 −0.00349069
\(341\) −8217.92 −1.30506
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) −2937.65 −0.460428
\(345\) 0 0
\(346\) 174.836 0.0271654
\(347\) 4054.26 0.627217 0.313608 0.949552i \(-0.398462\pi\)
0.313608 + 0.949552i \(0.398462\pi\)
\(348\) 0 0
\(349\) −7112.95 −1.09097 −0.545484 0.838122i \(-0.683654\pi\)
−0.545484 + 0.838122i \(0.683654\pi\)
\(350\) 1748.55 0.267040
\(351\) 0 0
\(352\) −1170.39 −0.177221
\(353\) 5701.18 0.859613 0.429806 0.902921i \(-0.358582\pi\)
0.429806 + 0.902921i \(0.358582\pi\)
\(354\) 0 0
\(355\) −9.92857 −0.00148438
\(356\) 2568.92 0.382450
\(357\) 0 0
\(358\) −9314.07 −1.37504
\(359\) −2952.81 −0.434105 −0.217052 0.976160i \(-0.569644\pi\)
−0.217052 + 0.976160i \(0.569644\pi\)
\(360\) 0 0
\(361\) −6219.55 −0.906772
\(362\) 891.448 0.129429
\(363\) 0 0
\(364\) −688.089 −0.0990815
\(365\) 164.697 0.0236182
\(366\) 0 0
\(367\) −3854.72 −0.548268 −0.274134 0.961691i \(-0.588391\pi\)
−0.274134 + 0.961691i \(0.588391\pi\)
\(368\) −554.298 −0.0785185
\(369\) 0 0
\(370\) −202.298 −0.0284243
\(371\) −2052.21 −0.287184
\(372\) 0 0
\(373\) 676.560 0.0939167 0.0469584 0.998897i \(-0.485047\pi\)
0.0469584 + 0.998897i \(0.485047\pi\)
\(374\) 1243.54 0.171930
\(375\) 0 0
\(376\) 3327.45 0.456383
\(377\) 5873.60 0.802403
\(378\) 0 0
\(379\) 1642.91 0.222666 0.111333 0.993783i \(-0.464488\pi\)
0.111333 + 0.993783i \(0.464488\pi\)
\(380\) 32.5524 0.00439448
\(381\) 0 0
\(382\) 7517.56 1.00689
\(383\) −4595.64 −0.613123 −0.306562 0.951851i \(-0.599179\pi\)
−0.306562 + 0.951851i \(0.599179\pi\)
\(384\) 0 0
\(385\) 82.3944 0.0109070
\(386\) −3566.48 −0.470282
\(387\) 0 0
\(388\) −3932.32 −0.514518
\(389\) 11416.3 1.48800 0.743999 0.668181i \(-0.232927\pi\)
0.743999 + 0.668181i \(0.232927\pi\)
\(390\) 0 0
\(391\) 588.942 0.0761741
\(392\) 392.000 0.0505076
\(393\) 0 0
\(394\) −1958.79 −0.250463
\(395\) 125.867 0.0160330
\(396\) 0 0
\(397\) 12195.9 1.54180 0.770901 0.636954i \(-0.219806\pi\)
0.770901 + 0.636954i \(0.219806\pi\)
\(398\) −6715.41 −0.845761
\(399\) 0 0
\(400\) −1998.34 −0.249793
\(401\) 670.010 0.0834381 0.0417191 0.999129i \(-0.486717\pi\)
0.0417191 + 0.999129i \(0.486717\pi\)
\(402\) 0 0
\(403\) 5521.65 0.682514
\(404\) −5017.37 −0.617880
\(405\) 0 0
\(406\) −3346.16 −0.409032
\(407\) 11495.3 1.40001
\(408\) 0 0
\(409\) 12142.6 1.46800 0.734002 0.679147i \(-0.237650\pi\)
0.734002 + 0.679147i \(0.237650\pi\)
\(410\) 125.349 0.0150989
\(411\) 0 0
\(412\) 235.127 0.0281162
\(413\) 1036.00 0.123434
\(414\) 0 0
\(415\) 302.789 0.0358152
\(416\) 786.387 0.0926822
\(417\) 0 0
\(418\) −1849.75 −0.216445
\(419\) 9804.10 1.14311 0.571553 0.820565i \(-0.306341\pi\)
0.571553 + 0.820565i \(0.306341\pi\)
\(420\) 0 0
\(421\) −12913.2 −1.49490 −0.747449 0.664319i \(-0.768721\pi\)
−0.747449 + 0.664319i \(0.768721\pi\)
\(422\) 5605.66 0.646634
\(423\) 0 0
\(424\) 2345.38 0.268636
\(425\) 2123.24 0.242335
\(426\) 0 0
\(427\) −1142.44 −0.129477
\(428\) 5188.69 0.585992
\(429\) 0 0
\(430\) −236.352 −0.0265068
\(431\) 14434.6 1.61320 0.806599 0.591100i \(-0.201306\pi\)
0.806599 + 0.591100i \(0.201306\pi\)
\(432\) 0 0
\(433\) −15643.1 −1.73617 −0.868084 0.496417i \(-0.834649\pi\)
−0.868084 + 0.496417i \(0.834649\pi\)
\(434\) −3145.65 −0.347917
\(435\) 0 0
\(436\) 3320.93 0.364779
\(437\) −876.044 −0.0958968
\(438\) 0 0
\(439\) −5059.90 −0.550105 −0.275052 0.961429i \(-0.588695\pi\)
−0.275052 + 0.961429i \(0.588695\pi\)
\(440\) −94.1651 −0.0102026
\(441\) 0 0
\(442\) −835.537 −0.0899150
\(443\) −16096.5 −1.72634 −0.863170 0.504914i \(-0.831524\pi\)
−0.863170 + 0.504914i \(0.831524\pi\)
\(444\) 0 0
\(445\) 206.686 0.0220176
\(446\) −1138.30 −0.120852
\(447\) 0 0
\(448\) −448.000 −0.0472456
\(449\) 7808.68 0.820744 0.410372 0.911918i \(-0.365399\pi\)
0.410372 + 0.911918i \(0.365399\pi\)
\(450\) 0 0
\(451\) −7122.80 −0.743680
\(452\) 1233.38 0.128348
\(453\) 0 0
\(454\) 12449.8 1.28700
\(455\) −55.3611 −0.00570411
\(456\) 0 0
\(457\) 11624.9 1.18991 0.594956 0.803758i \(-0.297169\pi\)
0.594956 + 0.803758i \(0.297169\pi\)
\(458\) −5872.31 −0.599116
\(459\) 0 0
\(460\) −44.5968 −0.00452030
\(461\) −7703.19 −0.778250 −0.389125 0.921185i \(-0.627223\pi\)
−0.389125 + 0.921185i \(0.627223\pi\)
\(462\) 0 0
\(463\) 12414.3 1.24609 0.623045 0.782186i \(-0.285895\pi\)
0.623045 + 0.782186i \(0.285895\pi\)
\(464\) 3824.18 0.382614
\(465\) 0 0
\(466\) 4170.54 0.414585
\(467\) 5384.78 0.533571 0.266786 0.963756i \(-0.414038\pi\)
0.266786 + 0.963756i \(0.414038\pi\)
\(468\) 0 0
\(469\) −3288.39 −0.323760
\(470\) 267.714 0.0262739
\(471\) 0 0
\(472\) −1184.00 −0.115462
\(473\) 13430.4 1.30556
\(474\) 0 0
\(475\) −3158.29 −0.305079
\(476\) 476.000 0.0458349
\(477\) 0 0
\(478\) 8542.67 0.817432
\(479\) −3136.40 −0.299177 −0.149589 0.988748i \(-0.547795\pi\)
−0.149589 + 0.988748i \(0.547795\pi\)
\(480\) 0 0
\(481\) −7723.76 −0.732169
\(482\) −288.634 −0.0272758
\(483\) 0 0
\(484\) 26.8064 0.00251750
\(485\) −316.380 −0.0296208
\(486\) 0 0
\(487\) −7712.95 −0.717674 −0.358837 0.933400i \(-0.616827\pi\)
−0.358837 + 0.933400i \(0.616827\pi\)
\(488\) 1305.65 0.121115
\(489\) 0 0
\(490\) 31.5389 0.00290772
\(491\) −13651.9 −1.25479 −0.627395 0.778701i \(-0.715879\pi\)
−0.627395 + 0.778701i \(0.715879\pi\)
\(492\) 0 0
\(493\) −4063.19 −0.371190
\(494\) 1242.85 0.113195
\(495\) 0 0
\(496\) 3595.03 0.325447
\(497\) 215.956 0.0194908
\(498\) 0 0
\(499\) 4197.83 0.376595 0.188297 0.982112i \(-0.439703\pi\)
0.188297 + 0.982112i \(0.439703\pi\)
\(500\) −321.692 −0.0287730
\(501\) 0 0
\(502\) 4208.18 0.374144
\(503\) 15598.7 1.38272 0.691362 0.722508i \(-0.257011\pi\)
0.691362 + 0.722508i \(0.257011\pi\)
\(504\) 0 0
\(505\) −403.679 −0.0355713
\(506\) 2534.16 0.222642
\(507\) 0 0
\(508\) −4663.43 −0.407296
\(509\) −3968.13 −0.345549 −0.172774 0.984961i \(-0.555273\pi\)
−0.172774 + 0.984961i \(0.555273\pi\)
\(510\) 0 0
\(511\) −3582.31 −0.310121
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 5350.68 0.459161
\(515\) 18.9175 0.00161865
\(516\) 0 0
\(517\) −15212.5 −1.29409
\(518\) 4400.18 0.373229
\(519\) 0 0
\(520\) 63.2698 0.00533570
\(521\) −19228.6 −1.61693 −0.808463 0.588547i \(-0.799700\pi\)
−0.808463 + 0.588547i \(0.799700\pi\)
\(522\) 0 0
\(523\) −19149.0 −1.60101 −0.800506 0.599325i \(-0.795436\pi\)
−0.800506 + 0.599325i \(0.795436\pi\)
\(524\) 4811.21 0.401104
\(525\) 0 0
\(526\) 332.794 0.0275865
\(527\) −3819.72 −0.315730
\(528\) 0 0
\(529\) −10966.8 −0.901358
\(530\) 188.701 0.0154654
\(531\) 0 0
\(532\) −708.044 −0.0577023
\(533\) 4785.84 0.388926
\(534\) 0 0
\(535\) 417.463 0.0337355
\(536\) 3758.16 0.302850
\(537\) 0 0
\(538\) −16105.2 −1.29060
\(539\) −1792.16 −0.143216
\(540\) 0 0
\(541\) 3615.70 0.287341 0.143670 0.989626i \(-0.454110\pi\)
0.143670 + 0.989626i \(0.454110\pi\)
\(542\) −3717.81 −0.294638
\(543\) 0 0
\(544\) −544.000 −0.0428746
\(545\) 267.190 0.0210003
\(546\) 0 0
\(547\) 9915.19 0.775033 0.387516 0.921863i \(-0.373333\pi\)
0.387516 + 0.921863i \(0.373333\pi\)
\(548\) 10635.6 0.829071
\(549\) 0 0
\(550\) 9136.07 0.708297
\(551\) 6043.95 0.467297
\(552\) 0 0
\(553\) −2737.72 −0.210524
\(554\) 6423.03 0.492579
\(555\) 0 0
\(556\) 3958.43 0.301933
\(557\) 15373.4 1.16947 0.584733 0.811226i \(-0.301199\pi\)
0.584733 + 0.811226i \(0.301199\pi\)
\(558\) 0 0
\(559\) −9023.94 −0.682776
\(560\) −36.0444 −0.00271992
\(561\) 0 0
\(562\) −1727.85 −0.129689
\(563\) −8808.97 −0.659421 −0.329710 0.944082i \(-0.606951\pi\)
−0.329710 + 0.944082i \(0.606951\pi\)
\(564\) 0 0
\(565\) 99.2333 0.00738899
\(566\) 17943.8 1.33257
\(567\) 0 0
\(568\) −246.806 −0.0182320
\(569\) −2974.86 −0.219179 −0.109589 0.993977i \(-0.534954\pi\)
−0.109589 + 0.993977i \(0.534954\pi\)
\(570\) 0 0
\(571\) 1089.80 0.0798720 0.0399360 0.999202i \(-0.487285\pi\)
0.0399360 + 0.999202i \(0.487285\pi\)
\(572\) −3595.23 −0.262804
\(573\) 0 0
\(574\) −2726.46 −0.198258
\(575\) 4326.87 0.313814
\(576\) 0 0
\(577\) −7188.66 −0.518661 −0.259331 0.965789i \(-0.583502\pi\)
−0.259331 + 0.965789i \(0.583502\pi\)
\(578\) 578.000 0.0415945
\(579\) 0 0
\(580\) 307.679 0.0220271
\(581\) −6585.94 −0.470277
\(582\) 0 0
\(583\) −10722.7 −0.761728
\(584\) 4094.07 0.290092
\(585\) 0 0
\(586\) −3945.75 −0.278153
\(587\) −9458.69 −0.665080 −0.332540 0.943089i \(-0.607906\pi\)
−0.332540 + 0.943089i \(0.607906\pi\)
\(588\) 0 0
\(589\) 5681.79 0.397477
\(590\) −95.2603 −0.00664713
\(591\) 0 0
\(592\) −5028.77 −0.349124
\(593\) −14197.7 −0.983190 −0.491595 0.870824i \(-0.663586\pi\)
−0.491595 + 0.870824i \(0.663586\pi\)
\(594\) 0 0
\(595\) 38.2972 0.00263871
\(596\) 13189.6 0.906485
\(597\) 0 0
\(598\) −1702.71 −0.116436
\(599\) −16757.3 −1.14305 −0.571524 0.820586i \(-0.693647\pi\)
−0.571524 + 0.820586i \(0.693647\pi\)
\(600\) 0 0
\(601\) 13320.1 0.904059 0.452030 0.892003i \(-0.350700\pi\)
0.452030 + 0.892003i \(0.350700\pi\)
\(602\) 5140.88 0.348051
\(603\) 0 0
\(604\) 3115.46 0.209878
\(605\) 2.15674 0.000144932 0
\(606\) 0 0
\(607\) −5381.21 −0.359830 −0.179915 0.983682i \(-0.557582\pi\)
−0.179915 + 0.983682i \(0.557582\pi\)
\(608\) 809.194 0.0539756
\(609\) 0 0
\(610\) 105.048 0.00697255
\(611\) 10221.3 0.676778
\(612\) 0 0
\(613\) −15421.0 −1.01606 −0.508031 0.861339i \(-0.669627\pi\)
−0.508031 + 0.861339i \(0.669627\pi\)
\(614\) 13504.0 0.887583
\(615\) 0 0
\(616\) 2048.18 0.133967
\(617\) 13277.1 0.866314 0.433157 0.901319i \(-0.357400\pi\)
0.433157 + 0.901319i \(0.357400\pi\)
\(618\) 0 0
\(619\) −14770.3 −0.959078 −0.479539 0.877521i \(-0.659196\pi\)
−0.479539 + 0.877521i \(0.659196\pi\)
\(620\) 289.243 0.0187359
\(621\) 0 0
\(622\) −10745.5 −0.692692
\(623\) −4495.61 −0.289105
\(624\) 0 0
\(625\) 15586.2 0.997515
\(626\) 15081.3 0.962893
\(627\) 0 0
\(628\) −1757.97 −0.111705
\(629\) 5343.07 0.338700
\(630\) 0 0
\(631\) 29388.0 1.85407 0.927036 0.374972i \(-0.122348\pi\)
0.927036 + 0.374972i \(0.122348\pi\)
\(632\) 3128.82 0.196927
\(633\) 0 0
\(634\) −7320.16 −0.458550
\(635\) −375.203 −0.0234480
\(636\) 0 0
\(637\) 1204.16 0.0748986
\(638\) −17483.5 −1.08492
\(639\) 0 0
\(640\) 41.1936 0.00254425
\(641\) 1199.83 0.0739318 0.0369659 0.999317i \(-0.488231\pi\)
0.0369659 + 0.999317i \(0.488231\pi\)
\(642\) 0 0
\(643\) −14000.2 −0.858654 −0.429327 0.903149i \(-0.641249\pi\)
−0.429327 + 0.903149i \(0.641249\pi\)
\(644\) 970.022 0.0593544
\(645\) 0 0
\(646\) −859.768 −0.0523640
\(647\) −1398.98 −0.0850071 −0.0425036 0.999096i \(-0.513533\pi\)
−0.0425036 + 0.999096i \(0.513533\pi\)
\(648\) 0 0
\(649\) 5413.04 0.327397
\(650\) −6138.56 −0.370422
\(651\) 0 0
\(652\) 7746.37 0.465293
\(653\) −13756.7 −0.824414 −0.412207 0.911090i \(-0.635242\pi\)
−0.412207 + 0.911090i \(0.635242\pi\)
\(654\) 0 0
\(655\) 387.092 0.0230915
\(656\) 3115.96 0.185454
\(657\) 0 0
\(658\) −5823.03 −0.344993
\(659\) 16023.1 0.947150 0.473575 0.880754i \(-0.342963\pi\)
0.473575 + 0.880754i \(0.342963\pi\)
\(660\) 0 0
\(661\) 16622.1 0.978102 0.489051 0.872255i \(-0.337343\pi\)
0.489051 + 0.872255i \(0.337343\pi\)
\(662\) 172.531 0.0101293
\(663\) 0 0
\(664\) 7526.79 0.439904
\(665\) −56.9667 −0.00332191
\(666\) 0 0
\(667\) −8280.22 −0.480677
\(668\) 3812.09 0.220800
\(669\) 0 0
\(670\) 302.367 0.0174350
\(671\) −5969.19 −0.343425
\(672\) 0 0
\(673\) 13474.9 0.771798 0.385899 0.922541i \(-0.373891\pi\)
0.385899 + 0.922541i \(0.373891\pi\)
\(674\) −8056.37 −0.460415
\(675\) 0 0
\(676\) −6372.36 −0.362560
\(677\) −13117.9 −0.744700 −0.372350 0.928092i \(-0.621448\pi\)
−0.372350 + 0.928092i \(0.621448\pi\)
\(678\) 0 0
\(679\) 6881.55 0.388939
\(680\) −43.7683 −0.00246829
\(681\) 0 0
\(682\) −16435.8 −0.922817
\(683\) −17228.5 −0.965200 −0.482600 0.875841i \(-0.660308\pi\)
−0.482600 + 0.875841i \(0.660308\pi\)
\(684\) 0 0
\(685\) 855.702 0.0477295
\(686\) −686.000 −0.0381802
\(687\) 0 0
\(688\) −5875.30 −0.325572
\(689\) 7204.60 0.398365
\(690\) 0 0
\(691\) 7359.60 0.405170 0.202585 0.979265i \(-0.435066\pi\)
0.202585 + 0.979265i \(0.435066\pi\)
\(692\) 349.671 0.0192088
\(693\) 0 0
\(694\) 8108.52 0.443509
\(695\) 318.481 0.0173822
\(696\) 0 0
\(697\) −3310.70 −0.179917
\(698\) −14225.9 −0.771430
\(699\) 0 0
\(700\) 3497.10 0.188826
\(701\) −34022.9 −1.83313 −0.916566 0.399882i \(-0.869051\pi\)
−0.916566 + 0.399882i \(0.869051\pi\)
\(702\) 0 0
\(703\) −7947.76 −0.426395
\(704\) −2340.77 −0.125314
\(705\) 0 0
\(706\) 11402.4 0.607838
\(707\) 8780.40 0.467073
\(708\) 0 0
\(709\) 24086.4 1.27586 0.637929 0.770095i \(-0.279791\pi\)
0.637929 + 0.770095i \(0.279791\pi\)
\(710\) −19.8571 −0.00104961
\(711\) 0 0
\(712\) 5137.83 0.270433
\(713\) −7784.06 −0.408857
\(714\) 0 0
\(715\) −289.259 −0.0151296
\(716\) −18628.1 −0.972299
\(717\) 0 0
\(718\) −5905.63 −0.306958
\(719\) 11813.1 0.612732 0.306366 0.951914i \(-0.400887\pi\)
0.306366 + 0.951914i \(0.400887\pi\)
\(720\) 0 0
\(721\) −411.472 −0.0212539
\(722\) −12439.1 −0.641185
\(723\) 0 0
\(724\) 1782.90 0.0915204
\(725\) −29851.6 −1.52919
\(726\) 0 0
\(727\) 24829.9 1.26670 0.633348 0.773867i \(-0.281680\pi\)
0.633348 + 0.773867i \(0.281680\pi\)
\(728\) −1376.18 −0.0700612
\(729\) 0 0
\(730\) 329.394 0.0167006
\(731\) 6242.50 0.315851
\(732\) 0 0
\(733\) −3605.67 −0.181690 −0.0908448 0.995865i \(-0.528957\pi\)
−0.0908448 + 0.995865i \(0.528957\pi\)
\(734\) −7709.43 −0.387684
\(735\) 0 0
\(736\) −1108.60 −0.0555210
\(737\) −17181.6 −0.858743
\(738\) 0 0
\(739\) −31007.3 −1.54347 −0.771734 0.635945i \(-0.780610\pi\)
−0.771734 + 0.635945i \(0.780610\pi\)
\(740\) −404.597 −0.0200990
\(741\) 0 0
\(742\) −4104.42 −0.203070
\(743\) −35263.7 −1.74119 −0.870593 0.492004i \(-0.836265\pi\)
−0.870593 + 0.492004i \(0.836265\pi\)
\(744\) 0 0
\(745\) 1061.18 0.0521862
\(746\) 1353.12 0.0664092
\(747\) 0 0
\(748\) 2487.07 0.121573
\(749\) −9080.20 −0.442968
\(750\) 0 0
\(751\) −21219.7 −1.03105 −0.515526 0.856874i \(-0.672403\pi\)
−0.515526 + 0.856874i \(0.672403\pi\)
\(752\) 6654.90 0.322712
\(753\) 0 0
\(754\) 11747.2 0.567385
\(755\) 250.659 0.0120827
\(756\) 0 0
\(757\) −21688.5 −1.04132 −0.520661 0.853764i \(-0.674314\pi\)
−0.520661 + 0.853764i \(0.674314\pi\)
\(758\) 3285.82 0.157449
\(759\) 0 0
\(760\) 65.1048 0.00310737
\(761\) −5023.28 −0.239282 −0.119641 0.992817i \(-0.538174\pi\)
−0.119641 + 0.992817i \(0.538174\pi\)
\(762\) 0 0
\(763\) −5811.62 −0.275747
\(764\) 15035.1 0.711978
\(765\) 0 0
\(766\) −9191.28 −0.433543
\(767\) −3637.04 −0.171220
\(768\) 0 0
\(769\) −37085.8 −1.73908 −0.869538 0.493867i \(-0.835583\pi\)
−0.869538 + 0.493867i \(0.835583\pi\)
\(770\) 164.789 0.00771244
\(771\) 0 0
\(772\) −7132.95 −0.332540
\(773\) 19327.3 0.899295 0.449647 0.893206i \(-0.351550\pi\)
0.449647 + 0.893206i \(0.351550\pi\)
\(774\) 0 0
\(775\) −28062.9 −1.30071
\(776\) −7864.63 −0.363819
\(777\) 0 0
\(778\) 22832.7 1.05217
\(779\) 4924.63 0.226500
\(780\) 0 0
\(781\) 1128.36 0.0516975
\(782\) 1177.88 0.0538632
\(783\) 0 0
\(784\) 784.000 0.0357143
\(785\) −141.440 −0.00643083
\(786\) 0 0
\(787\) −24247.1 −1.09824 −0.549120 0.835743i \(-0.685037\pi\)
−0.549120 + 0.835743i \(0.685037\pi\)
\(788\) −3917.57 −0.177104
\(789\) 0 0
\(790\) 251.733 0.0113371
\(791\) −2158.42 −0.0970221
\(792\) 0 0
\(793\) 4010.72 0.179603
\(794\) 24391.8 1.09022
\(795\) 0 0
\(796\) −13430.8 −0.598044
\(797\) −37105.7 −1.64913 −0.824563 0.565771i \(-0.808579\pi\)
−0.824563 + 0.565771i \(0.808579\pi\)
\(798\) 0 0
\(799\) −7070.83 −0.313076
\(800\) −3996.69 −0.176630
\(801\) 0 0
\(802\) 1340.02 0.0589996
\(803\) −18717.4 −0.822567
\(804\) 0 0
\(805\) 78.0444 0.00341703
\(806\) 11043.3 0.482610
\(807\) 0 0
\(808\) −10034.7 −0.436907
\(809\) 38611.6 1.67801 0.839006 0.544123i \(-0.183137\pi\)
0.839006 + 0.544123i \(0.183137\pi\)
\(810\) 0 0
\(811\) 25379.0 1.09886 0.549431 0.835539i \(-0.314844\pi\)
0.549431 + 0.835539i \(0.314844\pi\)
\(812\) −6692.31 −0.289229
\(813\) 0 0
\(814\) 22990.7 0.989954
\(815\) 623.244 0.0267869
\(816\) 0 0
\(817\) −9285.65 −0.397630
\(818\) 24285.2 1.03804
\(819\) 0 0
\(820\) 250.698 0.0106765
\(821\) 8770.80 0.372842 0.186421 0.982470i \(-0.440311\pi\)
0.186421 + 0.982470i \(0.440311\pi\)
\(822\) 0 0
\(823\) 19292.1 0.817107 0.408553 0.912734i \(-0.366033\pi\)
0.408553 + 0.912734i \(0.366033\pi\)
\(824\) 470.254 0.0198812
\(825\) 0 0
\(826\) 2072.00 0.0872810
\(827\) −4800.71 −0.201859 −0.100929 0.994894i \(-0.532182\pi\)
−0.100929 + 0.994894i \(0.532182\pi\)
\(828\) 0 0
\(829\) −24515.2 −1.02708 −0.513540 0.858066i \(-0.671666\pi\)
−0.513540 + 0.858066i \(0.671666\pi\)
\(830\) 605.578 0.0253252
\(831\) 0 0
\(832\) 1572.77 0.0655362
\(833\) −833.000 −0.0346479
\(834\) 0 0
\(835\) 306.707 0.0127114
\(836\) −3699.49 −0.153050
\(837\) 0 0
\(838\) 19608.2 0.808299
\(839\) 9288.33 0.382204 0.191102 0.981570i \(-0.438794\pi\)
0.191102 + 0.981570i \(0.438794\pi\)
\(840\) 0 0
\(841\) 32737.3 1.34230
\(842\) −25826.4 −1.05705
\(843\) 0 0
\(844\) 11211.3 0.457239
\(845\) −512.696 −0.0208725
\(846\) 0 0
\(847\) −46.9111 −0.00190305
\(848\) 4690.76 0.189955
\(849\) 0 0
\(850\) 4246.48 0.171356
\(851\) 10888.4 0.438603
\(852\) 0 0
\(853\) −25831.5 −1.03688 −0.518438 0.855115i \(-0.673486\pi\)
−0.518438 + 0.855115i \(0.673486\pi\)
\(854\) −2284.88 −0.0915540
\(855\) 0 0
\(856\) 10377.4 0.414359
\(857\) −18969.5 −0.756110 −0.378055 0.925783i \(-0.623407\pi\)
−0.378055 + 0.925783i \(0.623407\pi\)
\(858\) 0 0
\(859\) −46123.5 −1.83203 −0.916015 0.401145i \(-0.868612\pi\)
−0.916015 + 0.401145i \(0.868612\pi\)
\(860\) −472.705 −0.0187431
\(861\) 0 0
\(862\) 28869.1 1.14070
\(863\) 12453.4 0.491216 0.245608 0.969369i \(-0.421012\pi\)
0.245608 + 0.969369i \(0.421012\pi\)
\(864\) 0 0
\(865\) 28.1333 0.00110585
\(866\) −31286.3 −1.22766
\(867\) 0 0
\(868\) −6291.30 −0.246015
\(869\) −14304.4 −0.558394
\(870\) 0 0
\(871\) 11544.4 0.449101
\(872\) 6641.85 0.257938
\(873\) 0 0
\(874\) −1752.09 −0.0678093
\(875\) 562.961 0.0217504
\(876\) 0 0
\(877\) 51198.4 1.97132 0.985660 0.168745i \(-0.0539714\pi\)
0.985660 + 0.168745i \(0.0539714\pi\)
\(878\) −10119.8 −0.388983
\(879\) 0 0
\(880\) −188.330 −0.00721433
\(881\) −32011.5 −1.22417 −0.612085 0.790792i \(-0.709669\pi\)
−0.612085 + 0.790792i \(0.709669\pi\)
\(882\) 0 0
\(883\) −15601.3 −0.594595 −0.297297 0.954785i \(-0.596085\pi\)
−0.297297 + 0.954785i \(0.596085\pi\)
\(884\) −1671.07 −0.0635795
\(885\) 0 0
\(886\) −32193.0 −1.22071
\(887\) 4233.82 0.160268 0.0801341 0.996784i \(-0.474465\pi\)
0.0801341 + 0.996784i \(0.474465\pi\)
\(888\) 0 0
\(889\) 8161.01 0.307887
\(890\) 413.371 0.0155688
\(891\) 0 0
\(892\) −2276.60 −0.0854553
\(893\) 10517.8 0.394136
\(894\) 0 0
\(895\) −1498.75 −0.0559752
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) 15617.4 0.580354
\(899\) 53703.2 1.99233
\(900\) 0 0
\(901\) −4983.93 −0.184283
\(902\) −14245.6 −0.525861
\(903\) 0 0
\(904\) 2466.76 0.0907558
\(905\) 143.445 0.00526882
\(906\) 0 0
\(907\) 11642.5 0.426221 0.213111 0.977028i \(-0.431640\pi\)
0.213111 + 0.977028i \(0.431640\pi\)
\(908\) 24899.6 0.910047
\(909\) 0 0
\(910\) −110.722 −0.00403341
\(911\) −39616.4 −1.44078 −0.720389 0.693570i \(-0.756037\pi\)
−0.720389 + 0.693570i \(0.756037\pi\)
\(912\) 0 0
\(913\) −34411.2 −1.24736
\(914\) 23249.8 0.841396
\(915\) 0 0
\(916\) −11744.6 −0.423639
\(917\) −8419.61 −0.303206
\(918\) 0 0
\(919\) 29003.4 1.04106 0.520530 0.853843i \(-0.325734\pi\)
0.520530 + 0.853843i \(0.325734\pi\)
\(920\) −89.1936 −0.00319633
\(921\) 0 0
\(922\) −15406.4 −0.550306
\(923\) −758.146 −0.0270365
\(924\) 0 0
\(925\) 39254.7 1.39534
\(926\) 24828.5 0.881119
\(927\) 0 0
\(928\) 7648.36 0.270549
\(929\) 21155.8 0.747145 0.373573 0.927601i \(-0.378133\pi\)
0.373573 + 0.927601i \(0.378133\pi\)
\(930\) 0 0
\(931\) 1239.08 0.0436188
\(932\) 8341.08 0.293156
\(933\) 0 0
\(934\) 10769.6 0.377292
\(935\) 200.101 0.00699893
\(936\) 0 0
\(937\) 4392.11 0.153131 0.0765656 0.997065i \(-0.475605\pi\)
0.0765656 + 0.997065i \(0.475605\pi\)
\(938\) −6576.77 −0.228933
\(939\) 0 0
\(940\) 535.429 0.0185785
\(941\) −46042.0 −1.59503 −0.797517 0.603296i \(-0.793854\pi\)
−0.797517 + 0.603296i \(0.793854\pi\)
\(942\) 0 0
\(943\) −6746.75 −0.232985
\(944\) −2368.00 −0.0816439
\(945\) 0 0
\(946\) 26860.8 0.923172
\(947\) −31088.7 −1.06679 −0.533393 0.845867i \(-0.679083\pi\)
−0.533393 + 0.845867i \(0.679083\pi\)
\(948\) 0 0
\(949\) 12576.3 0.430182
\(950\) −6316.59 −0.215723
\(951\) 0 0
\(952\) 952.000 0.0324102
\(953\) −10751.0 −0.365433 −0.182717 0.983166i \(-0.558489\pi\)
−0.182717 + 0.983166i \(0.558489\pi\)
\(954\) 0 0
\(955\) 1209.67 0.0409885
\(956\) 17085.3 0.578012
\(957\) 0 0
\(958\) −6272.81 −0.211550
\(959\) −18612.3 −0.626719
\(960\) 0 0
\(961\) 20694.3 0.694649
\(962\) −15447.5 −0.517721
\(963\) 0 0
\(964\) −577.268 −0.0192869
\(965\) −573.891 −0.0191443
\(966\) 0 0
\(967\) −31774.9 −1.05668 −0.528342 0.849032i \(-0.677186\pi\)
−0.528342 + 0.849032i \(0.677186\pi\)
\(968\) 53.6127 0.00178014
\(969\) 0 0
\(970\) −632.760 −0.0209450
\(971\) 34696.9 1.14673 0.573365 0.819300i \(-0.305638\pi\)
0.573365 + 0.819300i \(0.305638\pi\)
\(972\) 0 0
\(973\) −6927.25 −0.228240
\(974\) −15425.9 −0.507472
\(975\) 0 0
\(976\) 2611.30 0.0856409
\(977\) 5014.34 0.164200 0.0820998 0.996624i \(-0.473837\pi\)
0.0820998 + 0.996624i \(0.473837\pi\)
\(978\) 0 0
\(979\) −23489.3 −0.766824
\(980\) 63.0778 0.00205607
\(981\) 0 0
\(982\) −27303.8 −0.887270
\(983\) −19781.9 −0.641857 −0.320929 0.947103i \(-0.603995\pi\)
−0.320929 + 0.947103i \(0.603995\pi\)
\(984\) 0 0
\(985\) −315.194 −0.0101958
\(986\) −8126.38 −0.262471
\(987\) 0 0
\(988\) 2485.70 0.0800412
\(989\) 12721.4 0.409015
\(990\) 0 0
\(991\) 16865.3 0.540610 0.270305 0.962775i \(-0.412876\pi\)
0.270305 + 0.962775i \(0.412876\pi\)
\(992\) 7190.06 0.230126
\(993\) 0 0
\(994\) 431.911 0.0137821
\(995\) −1080.59 −0.0344293
\(996\) 0 0
\(997\) 51696.8 1.64218 0.821091 0.570798i \(-0.193366\pi\)
0.821091 + 0.570798i \(0.193366\pi\)
\(998\) 8395.67 0.266293
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2142.4.a.l.1.2 2
3.2 odd 2 238.4.a.a.1.1 2
12.11 even 2 1904.4.a.b.1.2 2
21.20 even 2 1666.4.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.4.a.a.1.1 2 3.2 odd 2
1666.4.a.c.1.2 2 21.20 even 2
1904.4.a.b.1.2 2 12.11 even 2
2142.4.a.l.1.2 2 1.1 even 1 trivial