Properties

Label 2142.4.a
Level $2142$
Weight $4$
Character orbit 2142.a
Rep. character $\chi_{2142}(1,\cdot)$
Character field $\Q$
Dimension $120$
Newform subspaces $37$
Sturm bound $1728$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2142.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 37 \)
Sturm bound: \(1728\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2142))\).

Total New Old
Modular forms 1312 120 1192
Cusp forms 1280 120 1160
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(90\)\(7\)\(83\)\(88\)\(7\)\(81\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(74\)\(5\)\(69\)\(72\)\(5\)\(67\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(78\)\(5\)\(73\)\(76\)\(5\)\(71\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(86\)\(7\)\(79\)\(84\)\(7\)\(77\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(80\)\(9\)\(71\)\(78\)\(9\)\(69\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(84\)\(10\)\(74\)\(82\)\(10\)\(72\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(82\)\(9\)\(73\)\(80\)\(9\)\(71\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(82\)\(8\)\(74\)\(80\)\(8\)\(72\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(86\)\(5\)\(81\)\(84\)\(5\)\(79\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(78\)\(7\)\(71\)\(76\)\(7\)\(69\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(78\)\(7\)\(71\)\(76\)\(7\)\(69\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(86\)\(5\)\(81\)\(84\)\(5\)\(79\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(84\)\(9\)\(75\)\(82\)\(9\)\(73\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(80\)\(8\)\(72\)\(78\)\(8\)\(70\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(82\)\(9\)\(73\)\(80\)\(9\)\(71\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(82\)\(10\)\(72\)\(80\)\(10\)\(70\)\(2\)\(0\)\(2\)
Plus space\(+\)\(664\)\(66\)\(598\)\(648\)\(66\)\(582\)\(16\)\(0\)\(16\)
Minus space\(-\)\(648\)\(54\)\(594\)\(632\)\(54\)\(578\)\(16\)\(0\)\(16\)

Trace form

\( 120 q + 480 q^{4} - 32 q^{5} + 44 q^{11} + 96 q^{13} + 56 q^{14} + 1920 q^{16} - 48 q^{19} - 128 q^{20} - 88 q^{22} - 896 q^{23} + 2104 q^{25} - 80 q^{26} + 796 q^{29} - 104 q^{31} + 112 q^{35} + 140 q^{37}+ \cdots + 2648 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2142))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 17
2142.4.a.a 2142.a 1.a $1$ $126.382$ \(\Q\) None 2142.4.a.a \(-2\) \(0\) \(-1\) \(7\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-q^{5}+7q^{7}-8q^{8}+\cdots\)
2142.4.a.b 2142.a 1.a $1$ $126.382$ \(\Q\) None 714.4.a.d \(-2\) \(0\) \(2\) \(-7\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+2q^{5}-7q^{7}-8q^{8}+\cdots\)
2142.4.a.c 2142.a 1.a $1$ $126.382$ \(\Q\) None 714.4.a.e \(-2\) \(0\) \(2\) \(7\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+2q^{5}+7q^{7}-8q^{8}+\cdots\)
2142.4.a.d 2142.a 1.a $1$ $126.382$ \(\Q\) None 714.4.a.f \(-2\) \(0\) \(5\) \(7\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+5q^{5}+7q^{7}-8q^{8}+\cdots\)
2142.4.a.e 2142.a 1.a $1$ $126.382$ \(\Q\) None 714.4.a.c \(-2\) \(0\) \(17\) \(7\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+17q^{5}+7q^{7}-8q^{8}+\cdots\)
2142.4.a.f 2142.a 1.a $1$ $126.382$ \(\Q\) None 714.4.a.b \(2\) \(0\) \(-7\) \(-7\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-7q^{5}-7q^{7}+8q^{8}+\cdots\)
2142.4.a.g 2142.a 1.a $1$ $126.382$ \(\Q\) None 714.4.a.a \(2\) \(0\) \(-2\) \(-7\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-2q^{5}-7q^{7}+8q^{8}+\cdots\)
2142.4.a.h 2142.a 1.a $1$ $126.382$ \(\Q\) None 2142.4.a.a \(2\) \(0\) \(1\) \(7\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+q^{5}+7q^{7}+8q^{8}+\cdots\)
2142.4.a.i 2142.a 1.a $2$ $126.382$ \(\Q(\sqrt{137}) \) None 714.4.a.h \(-4\) \(0\) \(-12\) \(-14\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-5-2\beta )q^{5}-7q^{7}+\cdots\)
2142.4.a.j 2142.a 1.a $2$ $126.382$ \(\Q(\sqrt{69}) \) None 238.4.a.b \(-4\) \(0\) \(7\) \(14\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(4-\beta )q^{5}+7q^{7}-8q^{8}+\cdots\)
2142.4.a.k 2142.a 1.a $2$ $126.382$ \(\Q(\sqrt{22}) \) None 714.4.a.i \(-4\) \(0\) \(18\) \(-14\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(9+\beta )q^{5}-7q^{7}-8q^{8}+\cdots\)
2142.4.a.l 2142.a 1.a $2$ $126.382$ \(\Q(\sqrt{93}) \) None 238.4.a.a \(4\) \(0\) \(-9\) \(-14\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-4-\beta )q^{5}-7q^{7}+\cdots\)
2142.4.a.m 2142.a 1.a $2$ $126.382$ \(\Q(\sqrt{10}) \) None 714.4.a.g \(4\) \(0\) \(2\) \(14\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(1+3\beta )q^{5}+7q^{7}+\cdots\)
2142.4.a.n 2142.a 1.a $3$ $126.382$ 3.3.55029.1 None 238.4.a.f \(-6\) \(0\) \(-19\) \(21\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-7+\beta _{1}+\beta _{2})q^{5}+\cdots\)
2142.4.a.o 2142.a 1.a $3$ $126.382$ 3.3.80300.1 None 714.4.a.n \(-6\) \(0\) \(-2\) \(-21\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-1+\beta _{1}-\beta _{2})q^{5}+\cdots\)
2142.4.a.p 2142.a 1.a $3$ $126.382$ 3.3.3221.1 None 238.4.a.e \(-6\) \(0\) \(15\) \(-21\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(4+3\beta _{1}+2\beta _{2})q^{5}+\cdots\)
2142.4.a.q 2142.a 1.a $3$ $126.382$ 3.3.515564.1 None 714.4.a.m \(6\) \(0\) \(-7\) \(-21\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-2-\beta _{1})q^{5}-7q^{7}+\cdots\)
2142.4.a.r 2142.a 1.a $3$ $126.382$ 3.3.2140348.1 None 714.4.a.l \(6\) \(0\) \(2\) \(21\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(1-\beta _{1})q^{5}+7q^{7}+\cdots\)
2142.4.a.s 2142.a 1.a $3$ $126.382$ 3.3.75201.1 None 714.4.a.k \(6\) \(0\) \(4\) \(21\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(1-\beta _{2})q^{5}+7q^{7}+\cdots\)
2142.4.a.t 2142.a 1.a $3$ $126.382$ 3.3.48173.1 None 238.4.a.d \(6\) \(0\) \(5\) \(-21\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(2-2\beta _{1}-\beta _{2})q^{5}+\cdots\)
2142.4.a.u 2142.a 1.a $3$ $126.382$ 3.3.356300.1 None 714.4.a.j \(6\) \(0\) \(5\) \(-21\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(2+\beta _{2})q^{5}-7q^{7}+\cdots\)
2142.4.a.v 2142.a 1.a $3$ $126.382$ 3.3.69061.1 None 238.4.a.c \(6\) \(0\) \(21\) \(21\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(7+\beta _{2})q^{5}+7q^{7}+\cdots\)
2142.4.a.w 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 238.4.a.h \(-8\) \(0\) \(-19\) \(-28\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-5-\beta _{1}-\beta _{3})q^{5}+\cdots\)
2142.4.a.x 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 714.4.a.r \(-8\) \(0\) \(-14\) \(-28\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-3+\beta _{3})q^{5}-7q^{7}+\cdots\)
2142.4.a.y 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 714.4.a.q \(-8\) \(0\) \(-3\) \(28\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-1+\beta _{1})q^{5}+7q^{7}+\cdots\)
2142.4.a.z 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 2142.4.a.z \(-8\) \(0\) \(23\) \(28\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(6-\beta _{1})q^{5}+7q^{7}+\cdots\)
2142.4.a.ba 2142.a 1.a $4$ $126.382$ 4.4.1414152.1 None 238.4.a.g \(8\) \(0\) \(-33\) \(28\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-9+\beta _{1}-\beta _{3})q^{5}+\cdots\)
2142.4.a.bb 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 2142.4.a.z \(8\) \(0\) \(-23\) \(28\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-6+\beta _{1})q^{5}+7q^{7}+\cdots\)
2142.4.a.bc 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 714.4.a.p \(8\) \(0\) \(0\) \(28\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+\beta _{1}q^{5}+7q^{7}+8q^{8}+\cdots\)
2142.4.a.bd 2142.a 1.a $4$ $126.382$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 714.4.a.o \(8\) \(0\) \(3\) \(-28\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(1-\beta _{1})q^{5}-7q^{7}+\cdots\)
2142.4.a.be 2142.a 1.a $5$ $126.382$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 714.4.a.s \(-10\) \(0\) \(-13\) \(35\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-3+\beta _{1})q^{5}+7q^{7}+\cdots\)
2142.4.a.bf 2142.a 1.a $5$ $126.382$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 2142.4.a.bf \(-10\) \(0\) \(-12\) \(-35\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-2-\beta _{1})q^{5}-7q^{7}+\cdots\)
2142.4.a.bg 2142.a 1.a $5$ $126.382$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 2142.4.a.bf \(10\) \(0\) \(12\) \(-35\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(2+\beta _{1})q^{5}-7q^{7}+\cdots\)
2142.4.a.bh 2142.a 1.a $7$ $126.382$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2142.4.a.bh \(-14\) \(0\) \(-22\) \(49\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-3-\beta _{1})q^{5}+7q^{7}+\cdots\)
2142.4.a.bi 2142.a 1.a $7$ $126.382$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2142.4.a.bi \(-14\) \(0\) \(12\) \(-49\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(2-\beta _{1})q^{5}-7q^{7}+\cdots\)
2142.4.a.bj 2142.a 1.a $7$ $126.382$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2142.4.a.bi \(14\) \(0\) \(-12\) \(-49\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-2+\beta _{1})q^{5}-7q^{7}+\cdots\)
2142.4.a.bk 2142.a 1.a $7$ $126.382$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 2142.4.a.bh \(14\) \(0\) \(22\) \(49\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(3+\beta _{1})q^{5}+7q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2142))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(2142)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1071))\)\(^{\oplus 2}\)