Defining parameters
| Level: | \( N \) | \(=\) | \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2142.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 37 \) | ||
| Sturm bound: | \(1728\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(2142))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1312 | 120 | 1192 |
| Cusp forms | 1280 | 120 | 1160 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(90\) | \(7\) | \(83\) | \(88\) | \(7\) | \(81\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(74\) | \(5\) | \(69\) | \(72\) | \(5\) | \(67\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(78\) | \(5\) | \(73\) | \(76\) | \(5\) | \(71\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(86\) | \(7\) | \(79\) | \(84\) | \(7\) | \(77\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(80\) | \(9\) | \(71\) | \(78\) | \(9\) | \(69\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(84\) | \(10\) | \(74\) | \(82\) | \(10\) | \(72\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(82\) | \(9\) | \(73\) | \(80\) | \(9\) | \(71\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(82\) | \(8\) | \(74\) | \(80\) | \(8\) | \(72\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(86\) | \(5\) | \(81\) | \(84\) | \(5\) | \(79\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(78\) | \(7\) | \(71\) | \(76\) | \(7\) | \(69\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(78\) | \(7\) | \(71\) | \(76\) | \(7\) | \(69\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(86\) | \(5\) | \(81\) | \(84\) | \(5\) | \(79\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(84\) | \(9\) | \(75\) | \(82\) | \(9\) | \(73\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(80\) | \(8\) | \(72\) | \(78\) | \(8\) | \(70\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(82\) | \(9\) | \(73\) | \(80\) | \(9\) | \(71\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(82\) | \(10\) | \(72\) | \(80\) | \(10\) | \(70\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(664\) | \(66\) | \(598\) | \(648\) | \(66\) | \(582\) | \(16\) | \(0\) | \(16\) | ||||||
| Minus space | \(-\) | \(648\) | \(54\) | \(594\) | \(632\) | \(54\) | \(578\) | \(16\) | \(0\) | \(16\) | ||||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(2142))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(2142))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(2142)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(1071))\)\(^{\oplus 2}\)