Properties

Label 2142.4
Level 2142
Weight 4
Dimension 93736
Nonzero newspaces 50
Sturm bound 995328
Trace bound 18

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 50 \)
Sturm bound: \(995328\)
Trace bound: \(18\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2142))\).

Total New Old
Modular forms 376320 93736 282584
Cusp forms 370176 93736 276440
Eisenstein series 6144 0 6144

Trace form

\( 93736 q + 16 q^{2} + 12 q^{3} - 32 q^{4} + 96 q^{5} - 72 q^{6} + 88 q^{7} - 32 q^{8} - 420 q^{9} - 328 q^{10} - 424 q^{11} + 96 q^{12} + 628 q^{13} + 1088 q^{14} + 840 q^{15} + 182 q^{17} - 48 q^{18} - 656 q^{19}+ \cdots - 29424 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2142))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2142.4.a \(\chi_{2142}(1, \cdot)\) 2142.4.a.a 1 1
2142.4.a.b 1
2142.4.a.c 1
2142.4.a.d 1
2142.4.a.e 1
2142.4.a.f 1
2142.4.a.g 1
2142.4.a.h 1
2142.4.a.i 2
2142.4.a.j 2
2142.4.a.k 2
2142.4.a.l 2
2142.4.a.m 2
2142.4.a.n 3
2142.4.a.o 3
2142.4.a.p 3
2142.4.a.q 3
2142.4.a.r 3
2142.4.a.s 3
2142.4.a.t 3
2142.4.a.u 3
2142.4.a.v 3
2142.4.a.w 4
2142.4.a.x 4
2142.4.a.y 4
2142.4.a.z 4
2142.4.a.ba 4
2142.4.a.bb 4
2142.4.a.bc 4
2142.4.a.bd 4
2142.4.a.be 5
2142.4.a.bf 5
2142.4.a.bg 5
2142.4.a.bh 7
2142.4.a.bi 7
2142.4.a.bj 7
2142.4.a.bk 7
2142.4.b \(\chi_{2142}(883, \cdot)\) n/a 136 1
2142.4.e \(\chi_{2142}(2141, \cdot)\) n/a 144 1
2142.4.f \(\chi_{2142}(1259, \cdot)\) n/a 128 1
2142.4.i \(\chi_{2142}(1633, \cdot)\) n/a 768 2
2142.4.j \(\chi_{2142}(715, \cdot)\) n/a 576 2
2142.4.k \(\chi_{2142}(613, \cdot)\) n/a 320 2
2142.4.l \(\chi_{2142}(205, \cdot)\) n/a 768 2
2142.4.n \(\chi_{2142}(251, \cdot)\) n/a 288 2
2142.4.p \(\chi_{2142}(1135, \cdot)\) n/a 272 2
2142.4.r \(\chi_{2142}(67, \cdot)\) n/a 864 2
2142.4.s \(\chi_{2142}(815, \cdot)\) n/a 864 2
2142.4.y \(\chi_{2142}(341, \cdot)\) n/a 256 2
2142.4.ba \(\chi_{2142}(545, \cdot)\) n/a 768 2
2142.4.bb \(\chi_{2142}(1361, \cdot)\) n/a 768 2
2142.4.bd \(\chi_{2142}(1223, \cdot)\) n/a 288 2
2142.4.bf \(\chi_{2142}(713, \cdot)\) n/a 864 2
2142.4.bi \(\chi_{2142}(101, \cdot)\) n/a 864 2
2142.4.bj \(\chi_{2142}(373, \cdot)\) n/a 864 2
2142.4.bm \(\chi_{2142}(169, \cdot)\) n/a 648 2
2142.4.bo \(\chi_{2142}(1495, \cdot)\) n/a 360 2
2142.4.bq \(\chi_{2142}(1055, \cdot)\) n/a 768 2
2142.4.bs \(\chi_{2142}(127, \cdot)\) n/a 536 4
2142.4.bu \(\chi_{2142}(1385, \cdot)\) n/a 576 4
2142.4.bw \(\chi_{2142}(89, \cdot)\) n/a 576 4
2142.4.by \(\chi_{2142}(421, \cdot)\) n/a 1296 4
2142.4.ca \(\chi_{2142}(319, \cdot)\) n/a 1728 4
2142.4.cd \(\chi_{2142}(625, \cdot)\) n/a 1728 4
2142.4.ce \(\chi_{2142}(47, \cdot)\) n/a 1728 4
2142.4.ch \(\chi_{2142}(353, \cdot)\) n/a 1728 4
2142.4.ci \(\chi_{2142}(293, \cdot)\) n/a 1728 4
2142.4.ck \(\chi_{2142}(361, \cdot)\) n/a 720 4
2142.4.co \(\chi_{2142}(181, \cdot)\) n/a 1440 8
2142.4.cp \(\chi_{2142}(71, \cdot)\) n/a 864 8
2142.4.cr \(\chi_{2142}(739, \cdot)\) n/a 1440 8
2142.4.cs \(\chi_{2142}(257, \cdot)\) n/a 3456 8
2142.4.cv \(\chi_{2142}(83, \cdot)\) n/a 3456 8
2142.4.cw \(\chi_{2142}(59, \cdot)\) n/a 3456 8
2142.4.cy \(\chi_{2142}(25, \cdot)\) n/a 3456 8
2142.4.db \(\chi_{2142}(43, \cdot)\) n/a 2592 8
2142.4.dc \(\chi_{2142}(331, \cdot)\) n/a 3456 8
2142.4.df \(\chi_{2142}(467, \cdot)\) n/a 1152 8
2142.4.dg \(\chi_{2142}(11, \cdot)\) n/a 6912 16
2142.4.dh \(\chi_{2142}(241, \cdot)\) n/a 6912 16
2142.4.dm \(\chi_{2142}(107, \cdot)\) n/a 2304 16
2142.4.dn \(\chi_{2142}(29, \cdot)\) n/a 5184 16
2142.4.do \(\chi_{2142}(73, \cdot)\) n/a 2880 16
2142.4.dp \(\chi_{2142}(97, \cdot)\) n/a 6912 16
2142.4.du \(\chi_{2142}(31, \cdot)\) n/a 6912 16
2142.4.dv \(\chi_{2142}(65, \cdot)\) n/a 6912 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2142))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2142)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(153))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(306))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(357))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(714))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1071))\)\(^{\oplus 2}\)