Properties

Label 2142.2.a.l.1.1
Level $2142$
Weight $2$
Character 2142.1
Self dual yes
Analytic conductor $17.104$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,2,Mod(1,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,-4,0,1,1,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.1039561130\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2142.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -4.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} -4.00000 q^{10} +4.00000 q^{11} -4.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} -6.00000 q^{19} -4.00000 q^{20} +4.00000 q^{22} +11.0000 q^{25} -4.00000 q^{26} +1.00000 q^{28} -6.00000 q^{29} +4.00000 q^{31} +1.00000 q^{32} +1.00000 q^{34} -4.00000 q^{35} -10.0000 q^{37} -6.00000 q^{38} -4.00000 q^{40} -6.00000 q^{41} +4.00000 q^{44} -4.00000 q^{47} +1.00000 q^{49} +11.0000 q^{50} -4.00000 q^{52} -14.0000 q^{53} -16.0000 q^{55} +1.00000 q^{56} -6.00000 q^{58} +6.00000 q^{59} -12.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +16.0000 q^{65} +4.00000 q^{67} +1.00000 q^{68} -4.00000 q^{70} +8.00000 q^{71} +2.00000 q^{73} -10.0000 q^{74} -6.00000 q^{76} +4.00000 q^{77} -4.00000 q^{80} -6.00000 q^{82} -10.0000 q^{83} -4.00000 q^{85} +4.00000 q^{88} -10.0000 q^{89} -4.00000 q^{91} -4.00000 q^{94} +24.0000 q^{95} +6.00000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −4.00000 −1.26491
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) −4.00000 −0.632456
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) −4.00000 −0.554700
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) −16.0000 −2.15744
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 16.0000 1.98456
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) −4.00000 −0.478091
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −4.00000 −0.447214
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) −10.0000 −1.09764 −0.548821 0.835940i \(-0.684923\pi\)
−0.548821 + 0.835940i \(0.684923\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) −4.00000 −0.412568
\(95\) 24.0000 2.46235
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 11.0000 1.10000
\(101\) −16.0000 −1.59206 −0.796030 0.605257i \(-0.793070\pi\)
−0.796030 + 0.605257i \(0.793070\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −16.0000 −1.52554
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −12.0000 −1.08643
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 16.0000 1.40329
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) −16.0000 −1.33799
\(144\) 0 0
\(145\) 24.0000 1.99309
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −10.0000 −0.821995
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −4.00000 −0.316228
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −10.0000 −0.776151
\(167\) 20.0000 1.54765 0.773823 0.633402i \(-0.218342\pi\)
0.773823 + 0.633402i \(0.218342\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) 0 0
\(173\) 8.00000 0.608229 0.304114 0.952636i \(-0.401639\pi\)
0.304114 + 0.952636i \(0.401639\pi\)
\(174\) 0 0
\(175\) 11.0000 0.831522
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −10.0000 −0.749532
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −4.00000 −0.296500
\(183\) 0 0
\(184\) 0 0
\(185\) 40.0000 2.94086
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 24.0000 1.74114
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 28.0000 1.98487 0.992434 0.122782i \(-0.0391815\pi\)
0.992434 + 0.122782i \(0.0391815\pi\)
\(200\) 11.0000 0.777817
\(201\) 0 0
\(202\) −16.0000 −1.12576
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 24.0000 1.67623
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −14.0000 −0.961524
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) −16.0000 −1.07872
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) −28.0000 −1.85029 −0.925146 0.379611i \(-0.876058\pi\)
−0.925146 + 0.379611i \(0.876058\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 16.0000 1.04372
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 1.00000 0.0648204
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) −12.0000 −0.768221
\(245\) −4.00000 −0.255551
\(246\) 0 0
\(247\) 24.0000 1.52708
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) −24.0000 −1.51789
\(251\) −14.0000 −0.883672 −0.441836 0.897096i \(-0.645673\pi\)
−0.441836 + 0.897096i \(0.645673\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) 16.0000 0.992278
\(261\) 0 0
\(262\) 18.0000 1.11204
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 56.0000 3.44005
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) 44.0000 2.65330
\(276\) 0 0
\(277\) 18.0000 1.08152 0.540758 0.841178i \(-0.318138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 10.0000 0.599760
\(279\) 0 0
\(280\) −4.00000 −0.239046
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −16.0000 −0.946100
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 24.0000 1.40933
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) −10.0000 −0.581238
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) 48.0000 2.74847
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 4.00000 0.227921
\(309\) 0 0
\(310\) −16.0000 −0.908739
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) −4.00000 −0.223607
\(321\) 0 0
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) −44.0000 −2.44068
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −10.0000 −0.548821
\(333\) 0 0
\(334\) 20.0000 1.09435
\(335\) −16.0000 −0.874173
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 3.00000 0.163178
\(339\) 0 0
\(340\) −4.00000 −0.216930
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 8.00000 0.430083
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 11.0000 0.587975
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) 0 0
\(355\) −32.0000 −1.69838
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) −8.00000 −0.418739
\(366\) 0 0
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 40.0000 2.07950
\(371\) −14.0000 −0.726844
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 24.0000 1.23117
\(381\) 0 0
\(382\) 24.0000 1.22795
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) −16.0000 −0.815436
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) 6.00000 0.304604
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) 0 0
\(397\) −16.0000 −0.803017 −0.401508 0.915855i \(-0.631514\pi\)
−0.401508 + 0.915855i \(0.631514\pi\)
\(398\) 28.0000 1.40351
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) −16.0000 −0.796030
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 24.0000 1.18528
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) 6.00000 0.295241
\(414\) 0 0
\(415\) 40.0000 1.96352
\(416\) −4.00000 −0.196116
\(417\) 0 0
\(418\) −24.0000 −1.17388
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) −14.0000 −0.679900
\(425\) 11.0000 0.533578
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 0 0
\(439\) 40.0000 1.90910 0.954548 0.298057i \(-0.0963387\pi\)
0.954548 + 0.298057i \(0.0963387\pi\)
\(440\) −16.0000 −0.762770
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 40.0000 1.89618
\(446\) 24.0000 1.13643
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) −14.0000 −0.658505
\(453\) 0 0
\(454\) 2.00000 0.0938647
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) −28.0000 −1.30835
\(459\) 0 0
\(460\) 0 0
\(461\) 20.0000 0.931493 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −26.0000 −1.20443
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 16.0000 0.738025
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 0 0
\(474\) 0 0
\(475\) −66.0000 −3.02829
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) −2.00000 −0.0910975
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −12.0000 −0.543214
\(489\) 0 0
\(490\) −4.00000 −0.180702
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) 0 0
\(493\) −6.00000 −0.270226
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) −14.0000 −0.624851
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 64.0000 2.84796
\(506\) 0 0
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −12.0000 −0.531891 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) −10.0000 −0.439375
\(519\) 0 0
\(520\) 16.0000 0.701646
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 4.00000 0.174243
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 56.0000 2.43248
\(531\) 0 0
\(532\) −6.00000 −0.260133
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) 24.0000 1.03471
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.00000 0.0428746
\(545\) 8.00000 0.342682
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −2.00000 −0.0854358
\(549\) 0 0
\(550\) 44.0000 1.87617
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 0 0
\(554\) 18.0000 0.764747
\(555\) 0 0
\(556\) 10.0000 0.424094
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −14.0000 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(564\) 0 0
\(565\) 56.0000 2.35594
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) −16.0000 −0.668994
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) 0 0
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 24.0000 0.996546
\(581\) −10.0000 −0.414870
\(582\) 0 0
\(583\) −56.0000 −2.31928
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) −24.0000 −0.988064
\(591\) 0 0
\(592\) −10.0000 −0.410997
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −4.00000 −0.163984
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) 0 0
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) −20.0000 −0.813116
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) 48.0000 1.94346
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 10.0000 0.403567
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) −14.0000 −0.563619 −0.281809 0.959470i \(-0.590935\pi\)
−0.281809 + 0.959470i \(0.590935\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) −16.0000 −0.642575
\(621\) 0 0
\(622\) −8.00000 −0.320771
\(623\) −10.0000 −0.400642
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) −10.0000 −0.398726
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 22.0000 0.873732
\(635\) 32.0000 1.26988
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) −4.00000 −0.158114
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) −44.0000 −1.72582
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) −72.0000 −2.81327
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) −4.00000 −0.155936
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 24.0000 0.933492 0.466746 0.884391i \(-0.345426\pi\)
0.466746 + 0.884391i \(0.345426\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −10.0000 −0.388075
\(665\) 24.0000 0.930680
\(666\) 0 0
\(667\) 0 0
\(668\) 20.0000 0.773823
\(669\) 0 0
\(670\) −16.0000 −0.618134
\(671\) −48.0000 −1.85302
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −16.0000 −0.614930 −0.307465 0.951559i \(-0.599481\pi\)
−0.307465 + 0.951559i \(0.599481\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) −4.00000 −0.153393
\(681\) 0 0
\(682\) 16.0000 0.612672
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 0 0
\(689\) 56.0000 2.13343
\(690\) 0 0
\(691\) 6.00000 0.228251 0.114125 0.993466i \(-0.463593\pi\)
0.114125 + 0.993466i \(0.463593\pi\)
\(692\) 8.00000 0.304114
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −40.0000 −1.51729
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 20.0000 0.757011
\(699\) 0 0
\(700\) 11.0000 0.415761
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 60.0000 2.26294
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) −26.0000 −0.978523
\(707\) −16.0000 −0.601742
\(708\) 0 0
\(709\) −2.00000 −0.0751116 −0.0375558 0.999295i \(-0.511957\pi\)
−0.0375558 + 0.999295i \(0.511957\pi\)
\(710\) −32.0000 −1.20094
\(711\) 0 0
\(712\) −10.0000 −0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 64.0000 2.39346
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) −24.0000 −0.895672
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 17.0000 0.632674
\(723\) 0 0
\(724\) 0 0
\(725\) −66.0000 −2.45118
\(726\) 0 0
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) −4.00000 −0.148250
\(729\) 0 0
\(730\) −8.00000 −0.296093
\(731\) 0 0
\(732\) 0 0
\(733\) −24.0000 −0.886460 −0.443230 0.896408i \(-0.646168\pi\)
−0.443230 + 0.896408i \(0.646168\pi\)
\(734\) −24.0000 −0.885856
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 40.0000 1.47043
\(741\) 0 0
\(742\) −14.0000 −0.513956
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −4.00000 −0.145865
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 64.0000 2.32920
\(756\) 0 0
\(757\) −30.0000 −1.09037 −0.545184 0.838316i \(-0.683540\pi\)
−0.545184 + 0.838316i \(0.683540\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 24.0000 0.870572
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) −16.0000 −0.576600
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) 44.0000 1.58053
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) −16.0000 −0.571064
\(786\) 0 0
\(787\) −10.0000 −0.356462 −0.178231 0.983989i \(-0.557037\pi\)
−0.178231 + 0.983989i \(0.557037\pi\)
\(788\) −2.00000 −0.0712470
\(789\) 0 0
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) −16.0000 −0.567819
\(795\) 0 0
\(796\) 28.0000 0.992434
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 11.0000 0.388909
\(801\) 0 0
\(802\) 18.0000 0.635602
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) 0 0
\(808\) −16.0000 −0.562878
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) −26.0000 −0.912983 −0.456492 0.889728i \(-0.650894\pi\)
−0.456492 + 0.889728i \(0.650894\pi\)
\(812\) −6.00000 −0.210559
\(813\) 0 0
\(814\) −40.0000 −1.40200
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) 0 0
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) 24.0000 0.838116
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 0 0
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 40.0000 1.38842
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −80.0000 −2.76851
\(836\) −24.0000 −0.830057
\(837\) 0 0
\(838\) −18.0000 −0.621800
\(839\) −52.0000 −1.79524 −0.897620 0.440771i \(-0.854705\pi\)
−0.897620 + 0.440771i \(0.854705\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −18.0000 −0.620321
\(843\) 0 0
\(844\) −8.00000 −0.275371
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) −14.0000 −0.480762
\(849\) 0 0
\(850\) 11.0000 0.377297
\(851\) 0 0
\(852\) 0 0
\(853\) 16.0000 0.547830 0.273915 0.961754i \(-0.411681\pi\)
0.273915 + 0.961754i \(0.411681\pi\)
\(854\) −12.0000 −0.410632
\(855\) 0 0
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) 30.0000 1.02359 0.511793 0.859109i \(-0.328981\pi\)
0.511793 + 0.859109i \(0.328981\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 8.00000 0.272481
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) −32.0000 −1.08803
\(866\) −34.0000 −1.15537
\(867\) 0 0
\(868\) 4.00000 0.135769
\(869\) 0 0
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) −2.00000 −0.0677285
\(873\) 0 0
\(874\) 0 0
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) −26.0000 −0.877958 −0.438979 0.898497i \(-0.644660\pi\)
−0.438979 + 0.898497i \(0.644660\pi\)
\(878\) 40.0000 1.34993
\(879\) 0 0
\(880\) −16.0000 −0.539360
\(881\) −50.0000 −1.68454 −0.842271 0.539054i \(-0.818782\pi\)
−0.842271 + 0.539054i \(0.818782\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −12.0000 −0.403148
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 40.0000 1.34080
\(891\) 0 0
\(892\) 24.0000 0.803579
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) −48.0000 −1.60446
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −10.0000 −0.333704
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −14.0000 −0.466408
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 2.00000 0.0663723
\(909\) 0 0
\(910\) 16.0000 0.530395
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −40.0000 −1.32381
\(914\) 22.0000 0.727695
\(915\) 0 0
\(916\) −28.0000 −0.925146
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.0000 0.658665
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) −110.000 −3.61678
\(926\) −40.0000 −1.31448
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −26.0000 −0.851658
\(933\) 0 0
\(934\) −18.0000 −0.588978
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 4.00000 0.130605
\(939\) 0 0
\(940\) 16.0000 0.521862
\(941\) 12.0000 0.391189 0.195594 0.980685i \(-0.437336\pi\)
0.195594 + 0.980685i \(0.437336\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) −66.0000 −2.14132
\(951\) 0 0
\(952\) 1.00000 0.0324102
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −96.0000 −3.10649
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) −4.00000 −0.129234
\(959\) −2.00000 −0.0645834
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 40.0000 1.28965
\(963\) 0 0
\(964\) −2.00000 −0.0644157
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) −24.0000 −0.770594
\(971\) −10.0000 −0.320915 −0.160458 0.987043i \(-0.551297\pi\)
−0.160458 + 0.987043i \(0.551297\pi\)
\(972\) 0 0
\(973\) 10.0000 0.320585
\(974\) −32.0000 −1.02535
\(975\) 0 0
\(976\) −12.0000 −0.384111
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) −4.00000 −0.127775
\(981\) 0 0
\(982\) 28.0000 0.893516
\(983\) 28.0000 0.893061 0.446531 0.894768i \(-0.352659\pi\)
0.446531 + 0.894768i \(0.352659\pi\)
\(984\) 0 0
\(985\) 8.00000 0.254901
\(986\) −6.00000 −0.191079
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) 0 0
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) −112.000 −3.55064
\(996\) 0 0
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) −24.0000 −0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2142.2.a.l.1.1 1
3.2 odd 2 238.2.a.b.1.1 1
12.11 even 2 1904.2.a.b.1.1 1
15.14 odd 2 5950.2.a.k.1.1 1
21.20 even 2 1666.2.a.b.1.1 1
24.5 odd 2 7616.2.a.a.1.1 1
24.11 even 2 7616.2.a.i.1.1 1
51.50 odd 2 4046.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.2.a.b.1.1 1 3.2 odd 2
1666.2.a.b.1.1 1 21.20 even 2
1904.2.a.b.1.1 1 12.11 even 2
2142.2.a.l.1.1 1 1.1 even 1 trivial
4046.2.a.b.1.1 1 51.50 odd 2
5950.2.a.k.1.1 1 15.14 odd 2
7616.2.a.a.1.1 1 24.5 odd 2
7616.2.a.i.1.1 1 24.11 even 2