Properties

Label 2128.2.a.l.1.2
Level $2128$
Weight $2$
Character 2128.1
Self dual yes
Analytic conductor $16.992$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2128,2,Mod(1,2128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2128.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2128 = 2^{4} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2128.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.9921655501\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 2128.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30278 q^{3} -3.00000 q^{5} -1.00000 q^{7} +7.90833 q^{9} +4.30278 q^{11} +1.60555 q^{13} -9.90833 q^{15} -1.69722 q^{17} -1.00000 q^{19} -3.30278 q^{21} +3.00000 q^{23} +4.00000 q^{25} +16.2111 q^{27} -0.908327 q^{29} +2.30278 q^{31} +14.2111 q^{33} +3.00000 q^{35} -3.60555 q^{37} +5.30278 q^{39} +4.30278 q^{41} +10.0000 q^{43} -23.7250 q^{45} +8.21110 q^{47} +1.00000 q^{49} -5.60555 q^{51} +3.90833 q^{53} -12.9083 q^{55} -3.30278 q^{57} -8.21110 q^{59} +10.2111 q^{61} -7.90833 q^{63} -4.81665 q^{65} -8.90833 q^{67} +9.90833 q^{69} +2.21110 q^{71} -16.5139 q^{73} +13.2111 q^{75} -4.30278 q^{77} +3.21110 q^{79} +29.8167 q^{81} +2.09167 q^{83} +5.09167 q^{85} -3.00000 q^{87} -3.39445 q^{89} -1.60555 q^{91} +7.60555 q^{93} +3.00000 q^{95} +2.39445 q^{97} +34.0278 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 6 q^{5} - 2 q^{7} + 5 q^{9} + 5 q^{11} - 4 q^{13} - 9 q^{15} - 7 q^{17} - 2 q^{19} - 3 q^{21} + 6 q^{23} + 8 q^{25} + 18 q^{27} + 9 q^{29} + q^{31} + 14 q^{33} + 6 q^{35} + 7 q^{39} + 5 q^{41}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.30278 1.90686 0.953429 0.301617i \(-0.0975264\pi\)
0.953429 + 0.301617i \(0.0975264\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 7.90833 2.63611
\(10\) 0 0
\(11\) 4.30278 1.29734 0.648668 0.761072i \(-0.275326\pi\)
0.648668 + 0.761072i \(0.275326\pi\)
\(12\) 0 0
\(13\) 1.60555 0.445300 0.222650 0.974898i \(-0.428529\pi\)
0.222650 + 0.974898i \(0.428529\pi\)
\(14\) 0 0
\(15\) −9.90833 −2.55832
\(16\) 0 0
\(17\) −1.69722 −0.411637 −0.205819 0.978590i \(-0.565986\pi\)
−0.205819 + 0.978590i \(0.565986\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −3.30278 −0.720725
\(22\) 0 0
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 16.2111 3.11983
\(28\) 0 0
\(29\) −0.908327 −0.168672 −0.0843360 0.996437i \(-0.526877\pi\)
−0.0843360 + 0.996437i \(0.526877\pi\)
\(30\) 0 0
\(31\) 2.30278 0.413591 0.206795 0.978384i \(-0.433697\pi\)
0.206795 + 0.978384i \(0.433697\pi\)
\(32\) 0 0
\(33\) 14.2111 2.47384
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −3.60555 −0.592749 −0.296374 0.955072i \(-0.595778\pi\)
−0.296374 + 0.955072i \(0.595778\pi\)
\(38\) 0 0
\(39\) 5.30278 0.849124
\(40\) 0 0
\(41\) 4.30278 0.671981 0.335990 0.941865i \(-0.390929\pi\)
0.335990 + 0.941865i \(0.390929\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) −23.7250 −3.53671
\(46\) 0 0
\(47\) 8.21110 1.19771 0.598856 0.800857i \(-0.295622\pi\)
0.598856 + 0.800857i \(0.295622\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −5.60555 −0.784934
\(52\) 0 0
\(53\) 3.90833 0.536850 0.268425 0.963301i \(-0.413497\pi\)
0.268425 + 0.963301i \(0.413497\pi\)
\(54\) 0 0
\(55\) −12.9083 −1.74056
\(56\) 0 0
\(57\) −3.30278 −0.437463
\(58\) 0 0
\(59\) −8.21110 −1.06899 −0.534497 0.845170i \(-0.679499\pi\)
−0.534497 + 0.845170i \(0.679499\pi\)
\(60\) 0 0
\(61\) 10.2111 1.30740 0.653699 0.756755i \(-0.273216\pi\)
0.653699 + 0.756755i \(0.273216\pi\)
\(62\) 0 0
\(63\) −7.90833 −0.996356
\(64\) 0 0
\(65\) −4.81665 −0.597432
\(66\) 0 0
\(67\) −8.90833 −1.08833 −0.544163 0.838980i \(-0.683153\pi\)
−0.544163 + 0.838980i \(0.683153\pi\)
\(68\) 0 0
\(69\) 9.90833 1.19282
\(70\) 0 0
\(71\) 2.21110 0.262410 0.131205 0.991355i \(-0.458115\pi\)
0.131205 + 0.991355i \(0.458115\pi\)
\(72\) 0 0
\(73\) −16.5139 −1.93280 −0.966402 0.257037i \(-0.917254\pi\)
−0.966402 + 0.257037i \(0.917254\pi\)
\(74\) 0 0
\(75\) 13.2111 1.52549
\(76\) 0 0
\(77\) −4.30278 −0.490347
\(78\) 0 0
\(79\) 3.21110 0.361277 0.180639 0.983550i \(-0.442184\pi\)
0.180639 + 0.983550i \(0.442184\pi\)
\(80\) 0 0
\(81\) 29.8167 3.31296
\(82\) 0 0
\(83\) 2.09167 0.229591 0.114795 0.993389i \(-0.463379\pi\)
0.114795 + 0.993389i \(0.463379\pi\)
\(84\) 0 0
\(85\) 5.09167 0.552269
\(86\) 0 0
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) −3.39445 −0.359811 −0.179905 0.983684i \(-0.557579\pi\)
−0.179905 + 0.983684i \(0.557579\pi\)
\(90\) 0 0
\(91\) −1.60555 −0.168308
\(92\) 0 0
\(93\) 7.60555 0.788659
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 2.39445 0.243119 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(98\) 0 0
\(99\) 34.0278 3.41992
\(100\) 0 0
\(101\) −11.6056 −1.15480 −0.577398 0.816463i \(-0.695932\pi\)
−0.577398 + 0.816463i \(0.695932\pi\)
\(102\) 0 0
\(103\) 1.78890 0.176265 0.0881327 0.996109i \(-0.471910\pi\)
0.0881327 + 0.996109i \(0.471910\pi\)
\(104\) 0 0
\(105\) 9.90833 0.966954
\(106\) 0 0
\(107\) 20.2111 1.95388 0.976941 0.213512i \(-0.0684901\pi\)
0.976941 + 0.213512i \(0.0684901\pi\)
\(108\) 0 0
\(109\) 4.21110 0.403350 0.201675 0.979452i \(-0.435361\pi\)
0.201675 + 0.979452i \(0.435361\pi\)
\(110\) 0 0
\(111\) −11.9083 −1.13029
\(112\) 0 0
\(113\) 13.3028 1.25142 0.625710 0.780056i \(-0.284809\pi\)
0.625710 + 0.780056i \(0.284809\pi\)
\(114\) 0 0
\(115\) −9.00000 −0.839254
\(116\) 0 0
\(117\) 12.6972 1.17386
\(118\) 0 0
\(119\) 1.69722 0.155584
\(120\) 0 0
\(121\) 7.51388 0.683080
\(122\) 0 0
\(123\) 14.2111 1.28137
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −9.81665 −0.871087 −0.435544 0.900168i \(-0.643444\pi\)
−0.435544 + 0.900168i \(0.643444\pi\)
\(128\) 0 0
\(129\) 33.0278 2.90793
\(130\) 0 0
\(131\) 2.48612 0.217213 0.108607 0.994085i \(-0.465361\pi\)
0.108607 + 0.994085i \(0.465361\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) −48.6333 −4.18569
\(136\) 0 0
\(137\) −21.6333 −1.84826 −0.924129 0.382080i \(-0.875208\pi\)
−0.924129 + 0.382080i \(0.875208\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 27.1194 2.28387
\(142\) 0 0
\(143\) 6.90833 0.577703
\(144\) 0 0
\(145\) 2.72498 0.226297
\(146\) 0 0
\(147\) 3.30278 0.272408
\(148\) 0 0
\(149\) 8.21110 0.672680 0.336340 0.941741i \(-0.390811\pi\)
0.336340 + 0.941741i \(0.390811\pi\)
\(150\) 0 0
\(151\) 4.90833 0.399434 0.199717 0.979854i \(-0.435998\pi\)
0.199717 + 0.979854i \(0.435998\pi\)
\(152\) 0 0
\(153\) −13.4222 −1.08512
\(154\) 0 0
\(155\) −6.90833 −0.554890
\(156\) 0 0
\(157\) −13.5139 −1.07852 −0.539262 0.842138i \(-0.681297\pi\)
−0.539262 + 0.842138i \(0.681297\pi\)
\(158\) 0 0
\(159\) 12.9083 1.02370
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) −9.30278 −0.728650 −0.364325 0.931272i \(-0.618700\pi\)
−0.364325 + 0.931272i \(0.618700\pi\)
\(164\) 0 0
\(165\) −42.6333 −3.31900
\(166\) 0 0
\(167\) −11.6056 −0.898065 −0.449032 0.893516i \(-0.648231\pi\)
−0.449032 + 0.893516i \(0.648231\pi\)
\(168\) 0 0
\(169\) −10.4222 −0.801708
\(170\) 0 0
\(171\) −7.90833 −0.604765
\(172\) 0 0
\(173\) −13.8167 −1.05046 −0.525230 0.850960i \(-0.676021\pi\)
−0.525230 + 0.850960i \(0.676021\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) −27.1194 −2.03842
\(178\) 0 0
\(179\) −20.7250 −1.54906 −0.774529 0.632539i \(-0.782013\pi\)
−0.774529 + 0.632539i \(0.782013\pi\)
\(180\) 0 0
\(181\) −14.3028 −1.06312 −0.531558 0.847022i \(-0.678393\pi\)
−0.531558 + 0.847022i \(0.678393\pi\)
\(182\) 0 0
\(183\) 33.7250 2.49302
\(184\) 0 0
\(185\) 10.8167 0.795256
\(186\) 0 0
\(187\) −7.30278 −0.534032
\(188\) 0 0
\(189\) −16.2111 −1.17918
\(190\) 0 0
\(191\) 14.3305 1.03692 0.518460 0.855102i \(-0.326505\pi\)
0.518460 + 0.855102i \(0.326505\pi\)
\(192\) 0 0
\(193\) 2.11943 0.152560 0.0762799 0.997086i \(-0.475696\pi\)
0.0762799 + 0.997086i \(0.475696\pi\)
\(194\) 0 0
\(195\) −15.9083 −1.13922
\(196\) 0 0
\(197\) 3.90833 0.278457 0.139228 0.990260i \(-0.455538\pi\)
0.139228 + 0.990260i \(0.455538\pi\)
\(198\) 0 0
\(199\) −15.4222 −1.09325 −0.546626 0.837377i \(-0.684088\pi\)
−0.546626 + 0.837377i \(0.684088\pi\)
\(200\) 0 0
\(201\) −29.4222 −2.07528
\(202\) 0 0
\(203\) 0.908327 0.0637521
\(204\) 0 0
\(205\) −12.9083 −0.901557
\(206\) 0 0
\(207\) 23.7250 1.64900
\(208\) 0 0
\(209\) −4.30278 −0.297629
\(210\) 0 0
\(211\) 11.3028 0.778115 0.389058 0.921213i \(-0.372801\pi\)
0.389058 + 0.921213i \(0.372801\pi\)
\(212\) 0 0
\(213\) 7.30278 0.500378
\(214\) 0 0
\(215\) −30.0000 −2.04598
\(216\) 0 0
\(217\) −2.30278 −0.156323
\(218\) 0 0
\(219\) −54.5416 −3.68558
\(220\) 0 0
\(221\) −2.72498 −0.183302
\(222\) 0 0
\(223\) 8.81665 0.590407 0.295203 0.955434i \(-0.404613\pi\)
0.295203 + 0.955434i \(0.404613\pi\)
\(224\) 0 0
\(225\) 31.6333 2.10889
\(226\) 0 0
\(227\) −0.119429 −0.00792681 −0.00396341 0.999992i \(-0.501262\pi\)
−0.00396341 + 0.999992i \(0.501262\pi\)
\(228\) 0 0
\(229\) −15.2111 −1.00518 −0.502589 0.864525i \(-0.667619\pi\)
−0.502589 + 0.864525i \(0.667619\pi\)
\(230\) 0 0
\(231\) −14.2111 −0.935022
\(232\) 0 0
\(233\) −12.9083 −0.845653 −0.422826 0.906211i \(-0.638962\pi\)
−0.422826 + 0.906211i \(0.638962\pi\)
\(234\) 0 0
\(235\) −24.6333 −1.60690
\(236\) 0 0
\(237\) 10.6056 0.688905
\(238\) 0 0
\(239\) −1.42221 −0.0919948 −0.0459974 0.998942i \(-0.514647\pi\)
−0.0459974 + 0.998942i \(0.514647\pi\)
\(240\) 0 0
\(241\) −13.3944 −0.862812 −0.431406 0.902158i \(-0.641982\pi\)
−0.431406 + 0.902158i \(0.641982\pi\)
\(242\) 0 0
\(243\) 49.8444 3.19752
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −1.60555 −0.102159
\(248\) 0 0
\(249\) 6.90833 0.437797
\(250\) 0 0
\(251\) 5.09167 0.321384 0.160692 0.987005i \(-0.448627\pi\)
0.160692 + 0.987005i \(0.448627\pi\)
\(252\) 0 0
\(253\) 12.9083 0.811540
\(254\) 0 0
\(255\) 16.8167 1.05310
\(256\) 0 0
\(257\) 9.90833 0.618064 0.309032 0.951052i \(-0.399995\pi\)
0.309032 + 0.951052i \(0.399995\pi\)
\(258\) 0 0
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) −7.18335 −0.444638
\(262\) 0 0
\(263\) 13.3028 0.820284 0.410142 0.912022i \(-0.365479\pi\)
0.410142 + 0.912022i \(0.365479\pi\)
\(264\) 0 0
\(265\) −11.7250 −0.720260
\(266\) 0 0
\(267\) −11.2111 −0.686108
\(268\) 0 0
\(269\) −11.7250 −0.714885 −0.357442 0.933935i \(-0.616351\pi\)
−0.357442 + 0.933935i \(0.616351\pi\)
\(270\) 0 0
\(271\) −7.09167 −0.430788 −0.215394 0.976527i \(-0.569104\pi\)
−0.215394 + 0.976527i \(0.569104\pi\)
\(272\) 0 0
\(273\) −5.30278 −0.320939
\(274\) 0 0
\(275\) 17.2111 1.03787
\(276\) 0 0
\(277\) −6.60555 −0.396889 −0.198445 0.980112i \(-0.563589\pi\)
−0.198445 + 0.980112i \(0.563589\pi\)
\(278\) 0 0
\(279\) 18.2111 1.09027
\(280\) 0 0
\(281\) 3.00000 0.178965 0.0894825 0.995988i \(-0.471479\pi\)
0.0894825 + 0.995988i \(0.471479\pi\)
\(282\) 0 0
\(283\) 12.3305 0.732974 0.366487 0.930423i \(-0.380560\pi\)
0.366487 + 0.930423i \(0.380560\pi\)
\(284\) 0 0
\(285\) 9.90833 0.586919
\(286\) 0 0
\(287\) −4.30278 −0.253985
\(288\) 0 0
\(289\) −14.1194 −0.830555
\(290\) 0 0
\(291\) 7.90833 0.463594
\(292\) 0 0
\(293\) 30.6333 1.78962 0.894808 0.446450i \(-0.147312\pi\)
0.894808 + 0.446450i \(0.147312\pi\)
\(294\) 0 0
\(295\) 24.6333 1.43421
\(296\) 0 0
\(297\) 69.7527 4.04746
\(298\) 0 0
\(299\) 4.81665 0.278554
\(300\) 0 0
\(301\) −10.0000 −0.576390
\(302\) 0 0
\(303\) −38.3305 −2.20203
\(304\) 0 0
\(305\) −30.6333 −1.75406
\(306\) 0 0
\(307\) −18.3028 −1.04459 −0.522297 0.852763i \(-0.674925\pi\)
−0.522297 + 0.852763i \(0.674925\pi\)
\(308\) 0 0
\(309\) 5.90833 0.336113
\(310\) 0 0
\(311\) −15.5139 −0.879711 −0.439856 0.898068i \(-0.644970\pi\)
−0.439856 + 0.898068i \(0.644970\pi\)
\(312\) 0 0
\(313\) 9.02776 0.510279 0.255139 0.966904i \(-0.417879\pi\)
0.255139 + 0.966904i \(0.417879\pi\)
\(314\) 0 0
\(315\) 23.7250 1.33675
\(316\) 0 0
\(317\) 23.2111 1.30367 0.651833 0.758363i \(-0.274000\pi\)
0.651833 + 0.758363i \(0.274000\pi\)
\(318\) 0 0
\(319\) −3.90833 −0.218824
\(320\) 0 0
\(321\) 66.7527 3.72577
\(322\) 0 0
\(323\) 1.69722 0.0944361
\(324\) 0 0
\(325\) 6.42221 0.356240
\(326\) 0 0
\(327\) 13.9083 0.769132
\(328\) 0 0
\(329\) −8.21110 −0.452693
\(330\) 0 0
\(331\) −15.3028 −0.841117 −0.420558 0.907266i \(-0.638166\pi\)
−0.420558 + 0.907266i \(0.638166\pi\)
\(332\) 0 0
\(333\) −28.5139 −1.56255
\(334\) 0 0
\(335\) 26.7250 1.46014
\(336\) 0 0
\(337\) −24.7250 −1.34686 −0.673428 0.739253i \(-0.735179\pi\)
−0.673428 + 0.739253i \(0.735179\pi\)
\(338\) 0 0
\(339\) 43.9361 2.38628
\(340\) 0 0
\(341\) 9.90833 0.536566
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −29.7250 −1.60034
\(346\) 0 0
\(347\) −25.5416 −1.37115 −0.685573 0.728004i \(-0.740448\pi\)
−0.685573 + 0.728004i \(0.740448\pi\)
\(348\) 0 0
\(349\) −10.5139 −0.562795 −0.281397 0.959591i \(-0.590798\pi\)
−0.281397 + 0.959591i \(0.590798\pi\)
\(350\) 0 0
\(351\) 26.0278 1.38926
\(352\) 0 0
\(353\) −0.908327 −0.0483454 −0.0241727 0.999708i \(-0.507695\pi\)
−0.0241727 + 0.999708i \(0.507695\pi\)
\(354\) 0 0
\(355\) −6.63331 −0.352059
\(356\) 0 0
\(357\) 5.60555 0.296677
\(358\) 0 0
\(359\) −28.5416 −1.50637 −0.753185 0.657809i \(-0.771483\pi\)
−0.753185 + 0.657809i \(0.771483\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 24.8167 1.30254
\(364\) 0 0
\(365\) 49.5416 2.59313
\(366\) 0 0
\(367\) −36.0278 −1.88063 −0.940317 0.340300i \(-0.889471\pi\)
−0.940317 + 0.340300i \(0.889471\pi\)
\(368\) 0 0
\(369\) 34.0278 1.77141
\(370\) 0 0
\(371\) −3.90833 −0.202910
\(372\) 0 0
\(373\) −1.11943 −0.0579619 −0.0289809 0.999580i \(-0.509226\pi\)
−0.0289809 + 0.999580i \(0.509226\pi\)
\(374\) 0 0
\(375\) 9.90833 0.511664
\(376\) 0 0
\(377\) −1.45837 −0.0751096
\(378\) 0 0
\(379\) 14.8167 0.761080 0.380540 0.924764i \(-0.375738\pi\)
0.380540 + 0.924764i \(0.375738\pi\)
\(380\) 0 0
\(381\) −32.4222 −1.66104
\(382\) 0 0
\(383\) 36.6333 1.87187 0.935937 0.352167i \(-0.114555\pi\)
0.935937 + 0.352167i \(0.114555\pi\)
\(384\) 0 0
\(385\) 12.9083 0.657869
\(386\) 0 0
\(387\) 79.0833 4.02003
\(388\) 0 0
\(389\) 37.1472 1.88344 0.941719 0.336402i \(-0.109210\pi\)
0.941719 + 0.336402i \(0.109210\pi\)
\(390\) 0 0
\(391\) −5.09167 −0.257497
\(392\) 0 0
\(393\) 8.21110 0.414195
\(394\) 0 0
\(395\) −9.63331 −0.484704
\(396\) 0 0
\(397\) 0.972244 0.0487955 0.0243978 0.999702i \(-0.492233\pi\)
0.0243978 + 0.999702i \(0.492233\pi\)
\(398\) 0 0
\(399\) 3.30278 0.165346
\(400\) 0 0
\(401\) −21.5139 −1.07435 −0.537176 0.843470i \(-0.680509\pi\)
−0.537176 + 0.843470i \(0.680509\pi\)
\(402\) 0 0
\(403\) 3.69722 0.184172
\(404\) 0 0
\(405\) −89.4500 −4.44480
\(406\) 0 0
\(407\) −15.5139 −0.768994
\(408\) 0 0
\(409\) 10.0917 0.499001 0.249501 0.968375i \(-0.419734\pi\)
0.249501 + 0.968375i \(0.419734\pi\)
\(410\) 0 0
\(411\) −71.4500 −3.52437
\(412\) 0 0
\(413\) 8.21110 0.404042
\(414\) 0 0
\(415\) −6.27502 −0.308029
\(416\) 0 0
\(417\) −16.5139 −0.808688
\(418\) 0 0
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 0 0
\(421\) −22.3944 −1.09144 −0.545719 0.837968i \(-0.683744\pi\)
−0.545719 + 0.837968i \(0.683744\pi\)
\(422\) 0 0
\(423\) 64.9361 3.15730
\(424\) 0 0
\(425\) −6.78890 −0.329310
\(426\) 0 0
\(427\) −10.2111 −0.494150
\(428\) 0 0
\(429\) 22.8167 1.10160
\(430\) 0 0
\(431\) −11.2111 −0.540020 −0.270010 0.962858i \(-0.587027\pi\)
−0.270010 + 0.962858i \(0.587027\pi\)
\(432\) 0 0
\(433\) −29.4222 −1.41394 −0.706970 0.707243i \(-0.749939\pi\)
−0.706970 + 0.707243i \(0.749939\pi\)
\(434\) 0 0
\(435\) 9.00000 0.431517
\(436\) 0 0
\(437\) −3.00000 −0.143509
\(438\) 0 0
\(439\) −37.2111 −1.77599 −0.887995 0.459854i \(-0.847902\pi\)
−0.887995 + 0.459854i \(0.847902\pi\)
\(440\) 0 0
\(441\) 7.90833 0.376587
\(442\) 0 0
\(443\) −9.11943 −0.433277 −0.216639 0.976252i \(-0.569509\pi\)
−0.216639 + 0.976252i \(0.569509\pi\)
\(444\) 0 0
\(445\) 10.1833 0.482737
\(446\) 0 0
\(447\) 27.1194 1.28270
\(448\) 0 0
\(449\) −18.5139 −0.873724 −0.436862 0.899529i \(-0.643910\pi\)
−0.436862 + 0.899529i \(0.643910\pi\)
\(450\) 0 0
\(451\) 18.5139 0.871784
\(452\) 0 0
\(453\) 16.2111 0.761664
\(454\) 0 0
\(455\) 4.81665 0.225808
\(456\) 0 0
\(457\) 18.6972 0.874619 0.437310 0.899311i \(-0.355931\pi\)
0.437310 + 0.899311i \(0.355931\pi\)
\(458\) 0 0
\(459\) −27.5139 −1.28424
\(460\) 0 0
\(461\) −9.90833 −0.461477 −0.230738 0.973016i \(-0.574114\pi\)
−0.230738 + 0.973016i \(0.574114\pi\)
\(462\) 0 0
\(463\) −28.4500 −1.32218 −0.661091 0.750306i \(-0.729906\pi\)
−0.661091 + 0.750306i \(0.729906\pi\)
\(464\) 0 0
\(465\) −22.8167 −1.05810
\(466\) 0 0
\(467\) 37.5416 1.73722 0.868610 0.495497i \(-0.165014\pi\)
0.868610 + 0.495497i \(0.165014\pi\)
\(468\) 0 0
\(469\) 8.90833 0.411348
\(470\) 0 0
\(471\) −44.6333 −2.05659
\(472\) 0 0
\(473\) 43.0278 1.97842
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 30.9083 1.41520
\(478\) 0 0
\(479\) 4.30278 0.196599 0.0982994 0.995157i \(-0.468660\pi\)
0.0982994 + 0.995157i \(0.468660\pi\)
\(480\) 0 0
\(481\) −5.78890 −0.263951
\(482\) 0 0
\(483\) −9.90833 −0.450844
\(484\) 0 0
\(485\) −7.18335 −0.326179
\(486\) 0 0
\(487\) −33.4222 −1.51450 −0.757252 0.653122i \(-0.773459\pi\)
−0.757252 + 0.653122i \(0.773459\pi\)
\(488\) 0 0
\(489\) −30.7250 −1.38943
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 1.54163 0.0694317
\(494\) 0 0
\(495\) −102.083 −4.58830
\(496\) 0 0
\(497\) −2.21110 −0.0991815
\(498\) 0 0
\(499\) 26.9361 1.20582 0.602912 0.797807i \(-0.294007\pi\)
0.602912 + 0.797807i \(0.294007\pi\)
\(500\) 0 0
\(501\) −38.3305 −1.71248
\(502\) 0 0
\(503\) 22.4222 0.999757 0.499878 0.866096i \(-0.333378\pi\)
0.499878 + 0.866096i \(0.333378\pi\)
\(504\) 0 0
\(505\) 34.8167 1.54932
\(506\) 0 0
\(507\) −34.4222 −1.52874
\(508\) 0 0
\(509\) −9.63331 −0.426989 −0.213494 0.976944i \(-0.568485\pi\)
−0.213494 + 0.976944i \(0.568485\pi\)
\(510\) 0 0
\(511\) 16.5139 0.730531
\(512\) 0 0
\(513\) −16.2111 −0.715738
\(514\) 0 0
\(515\) −5.36669 −0.236485
\(516\) 0 0
\(517\) 35.3305 1.55384
\(518\) 0 0
\(519\) −45.6333 −2.00308
\(520\) 0 0
\(521\) −6.63331 −0.290610 −0.145305 0.989387i \(-0.546416\pi\)
−0.145305 + 0.989387i \(0.546416\pi\)
\(522\) 0 0
\(523\) 41.6611 1.82171 0.910856 0.412725i \(-0.135423\pi\)
0.910856 + 0.412725i \(0.135423\pi\)
\(524\) 0 0
\(525\) −13.2111 −0.576580
\(526\) 0 0
\(527\) −3.90833 −0.170249
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −64.9361 −2.81799
\(532\) 0 0
\(533\) 6.90833 0.299233
\(534\) 0 0
\(535\) −60.6333 −2.62141
\(536\) 0 0
\(537\) −68.4500 −2.95383
\(538\) 0 0
\(539\) 4.30278 0.185334
\(540\) 0 0
\(541\) 31.2111 1.34187 0.670935 0.741516i \(-0.265893\pi\)
0.670935 + 0.741516i \(0.265893\pi\)
\(542\) 0 0
\(543\) −47.2389 −2.02721
\(544\) 0 0
\(545\) −12.6333 −0.541151
\(546\) 0 0
\(547\) 28.5139 1.21917 0.609583 0.792722i \(-0.291337\pi\)
0.609583 + 0.792722i \(0.291337\pi\)
\(548\) 0 0
\(549\) 80.7527 3.44644
\(550\) 0 0
\(551\) 0.908327 0.0386960
\(552\) 0 0
\(553\) −3.21110 −0.136550
\(554\) 0 0
\(555\) 35.7250 1.51644
\(556\) 0 0
\(557\) 24.1194 1.02197 0.510987 0.859589i \(-0.329280\pi\)
0.510987 + 0.859589i \(0.329280\pi\)
\(558\) 0 0
\(559\) 16.0555 0.679076
\(560\) 0 0
\(561\) −24.1194 −1.01832
\(562\) 0 0
\(563\) 9.78890 0.412553 0.206276 0.978494i \(-0.433865\pi\)
0.206276 + 0.978494i \(0.433865\pi\)
\(564\) 0 0
\(565\) −39.9083 −1.67896
\(566\) 0 0
\(567\) −29.8167 −1.25218
\(568\) 0 0
\(569\) 28.8167 1.20806 0.604028 0.796963i \(-0.293561\pi\)
0.604028 + 0.796963i \(0.293561\pi\)
\(570\) 0 0
\(571\) 9.60555 0.401980 0.200990 0.979593i \(-0.435584\pi\)
0.200990 + 0.979593i \(0.435584\pi\)
\(572\) 0 0
\(573\) 47.3305 1.97726
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 1.48612 0.0618681 0.0309340 0.999521i \(-0.490152\pi\)
0.0309340 + 0.999521i \(0.490152\pi\)
\(578\) 0 0
\(579\) 7.00000 0.290910
\(580\) 0 0
\(581\) −2.09167 −0.0867772
\(582\) 0 0
\(583\) 16.8167 0.696475
\(584\) 0 0
\(585\) −38.0917 −1.57490
\(586\) 0 0
\(587\) 28.4222 1.17311 0.586555 0.809909i \(-0.300484\pi\)
0.586555 + 0.809909i \(0.300484\pi\)
\(588\) 0 0
\(589\) −2.30278 −0.0948842
\(590\) 0 0
\(591\) 12.9083 0.530978
\(592\) 0 0
\(593\) 16.8167 0.690577 0.345289 0.938497i \(-0.387781\pi\)
0.345289 + 0.938497i \(0.387781\pi\)
\(594\) 0 0
\(595\) −5.09167 −0.208738
\(596\) 0 0
\(597\) −50.9361 −2.08468
\(598\) 0 0
\(599\) −9.90833 −0.404843 −0.202422 0.979298i \(-0.564881\pi\)
−0.202422 + 0.979298i \(0.564881\pi\)
\(600\) 0 0
\(601\) −9.48612 −0.386947 −0.193473 0.981106i \(-0.561975\pi\)
−0.193473 + 0.981106i \(0.561975\pi\)
\(602\) 0 0
\(603\) −70.4500 −2.86894
\(604\) 0 0
\(605\) −22.5416 −0.916448
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 0 0
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) 13.1833 0.533341
\(612\) 0 0
\(613\) 31.7250 1.28136 0.640680 0.767808i \(-0.278653\pi\)
0.640680 + 0.767808i \(0.278653\pi\)
\(614\) 0 0
\(615\) −42.6333 −1.71914
\(616\) 0 0
\(617\) −36.1194 −1.45411 −0.727057 0.686577i \(-0.759112\pi\)
−0.727057 + 0.686577i \(0.759112\pi\)
\(618\) 0 0
\(619\) 1.66947 0.0671016 0.0335508 0.999437i \(-0.489318\pi\)
0.0335508 + 0.999437i \(0.489318\pi\)
\(620\) 0 0
\(621\) 48.6333 1.95159
\(622\) 0 0
\(623\) 3.39445 0.135996
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) −14.2111 −0.567537
\(628\) 0 0
\(629\) 6.11943 0.243998
\(630\) 0 0
\(631\) 37.2389 1.48246 0.741228 0.671254i \(-0.234244\pi\)
0.741228 + 0.671254i \(0.234244\pi\)
\(632\) 0 0
\(633\) 37.3305 1.48376
\(634\) 0 0
\(635\) 29.4500 1.16869
\(636\) 0 0
\(637\) 1.60555 0.0636143
\(638\) 0 0
\(639\) 17.4861 0.691740
\(640\) 0 0
\(641\) −0.908327 −0.0358768 −0.0179384 0.999839i \(-0.505710\pi\)
−0.0179384 + 0.999839i \(0.505710\pi\)
\(642\) 0 0
\(643\) −37.6056 −1.48302 −0.741509 0.670943i \(-0.765890\pi\)
−0.741509 + 0.670943i \(0.765890\pi\)
\(644\) 0 0
\(645\) −99.0833 −3.90140
\(646\) 0 0
\(647\) 13.4222 0.527681 0.263841 0.964566i \(-0.415011\pi\)
0.263841 + 0.964566i \(0.415011\pi\)
\(648\) 0 0
\(649\) −35.3305 −1.38684
\(650\) 0 0
\(651\) −7.60555 −0.298085
\(652\) 0 0
\(653\) 4.81665 0.188490 0.0942451 0.995549i \(-0.469956\pi\)
0.0942451 + 0.995549i \(0.469956\pi\)
\(654\) 0 0
\(655\) −7.45837 −0.291422
\(656\) 0 0
\(657\) −130.597 −5.09508
\(658\) 0 0
\(659\) 23.3305 0.908828 0.454414 0.890790i \(-0.349849\pi\)
0.454414 + 0.890790i \(0.349849\pi\)
\(660\) 0 0
\(661\) −15.2111 −0.591643 −0.295822 0.955243i \(-0.595593\pi\)
−0.295822 + 0.955243i \(0.595593\pi\)
\(662\) 0 0
\(663\) −9.00000 −0.349531
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) −2.72498 −0.105512
\(668\) 0 0
\(669\) 29.1194 1.12582
\(670\) 0 0
\(671\) 43.9361 1.69613
\(672\) 0 0
\(673\) 4.09167 0.157722 0.0788612 0.996886i \(-0.474872\pi\)
0.0788612 + 0.996886i \(0.474872\pi\)
\(674\) 0 0
\(675\) 64.8444 2.49586
\(676\) 0 0
\(677\) −28.9361 −1.11210 −0.556052 0.831147i \(-0.687684\pi\)
−0.556052 + 0.831147i \(0.687684\pi\)
\(678\) 0 0
\(679\) −2.39445 −0.0918905
\(680\) 0 0
\(681\) −0.394449 −0.0151153
\(682\) 0 0
\(683\) 2.21110 0.0846055 0.0423027 0.999105i \(-0.486531\pi\)
0.0423027 + 0.999105i \(0.486531\pi\)
\(684\) 0 0
\(685\) 64.8999 2.47970
\(686\) 0 0
\(687\) −50.2389 −1.91673
\(688\) 0 0
\(689\) 6.27502 0.239059
\(690\) 0 0
\(691\) 20.1833 0.767811 0.383905 0.923372i \(-0.374579\pi\)
0.383905 + 0.923372i \(0.374579\pi\)
\(692\) 0 0
\(693\) −34.0278 −1.29261
\(694\) 0 0
\(695\) 15.0000 0.568982
\(696\) 0 0
\(697\) −7.30278 −0.276612
\(698\) 0 0
\(699\) −42.6333 −1.61254
\(700\) 0 0
\(701\) 6.78890 0.256413 0.128207 0.991747i \(-0.459078\pi\)
0.128207 + 0.991747i \(0.459078\pi\)
\(702\) 0 0
\(703\) 3.60555 0.135986
\(704\) 0 0
\(705\) −81.3583 −3.06413
\(706\) 0 0
\(707\) 11.6056 0.436472
\(708\) 0 0
\(709\) −4.39445 −0.165037 −0.0825185 0.996590i \(-0.526296\pi\)
−0.0825185 + 0.996590i \(0.526296\pi\)
\(710\) 0 0
\(711\) 25.3944 0.952366
\(712\) 0 0
\(713\) 6.90833 0.258719
\(714\) 0 0
\(715\) −20.7250 −0.775070
\(716\) 0 0
\(717\) −4.69722 −0.175421
\(718\) 0 0
\(719\) −15.6333 −0.583024 −0.291512 0.956567i \(-0.594158\pi\)
−0.291512 + 0.956567i \(0.594158\pi\)
\(720\) 0 0
\(721\) −1.78890 −0.0666220
\(722\) 0 0
\(723\) −44.2389 −1.64526
\(724\) 0 0
\(725\) −3.63331 −0.134938
\(726\) 0 0
\(727\) −51.6611 −1.91600 −0.958001 0.286764i \(-0.907421\pi\)
−0.958001 + 0.286764i \(0.907421\pi\)
\(728\) 0 0
\(729\) 75.1749 2.78426
\(730\) 0 0
\(731\) −16.9722 −0.627741
\(732\) 0 0
\(733\) 32.0000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(734\) 0 0
\(735\) −9.90833 −0.365474
\(736\) 0 0
\(737\) −38.3305 −1.41192
\(738\) 0 0
\(739\) 47.4222 1.74445 0.872227 0.489101i \(-0.162675\pi\)
0.872227 + 0.489101i \(0.162675\pi\)
\(740\) 0 0
\(741\) −5.30278 −0.194802
\(742\) 0 0
\(743\) −30.6333 −1.12383 −0.561914 0.827196i \(-0.689935\pi\)
−0.561914 + 0.827196i \(0.689935\pi\)
\(744\) 0 0
\(745\) −24.6333 −0.902495
\(746\) 0 0
\(747\) 16.5416 0.605227
\(748\) 0 0
\(749\) −20.2111 −0.738498
\(750\) 0 0
\(751\) 49.3583 1.80111 0.900555 0.434743i \(-0.143161\pi\)
0.900555 + 0.434743i \(0.143161\pi\)
\(752\) 0 0
\(753\) 16.8167 0.612833
\(754\) 0 0
\(755\) −14.7250 −0.535897
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 42.6333 1.54749
\(760\) 0 0
\(761\) −9.78890 −0.354847 −0.177424 0.984135i \(-0.556776\pi\)
−0.177424 + 0.984135i \(0.556776\pi\)
\(762\) 0 0
\(763\) −4.21110 −0.152452
\(764\) 0 0
\(765\) 40.2666 1.45584
\(766\) 0 0
\(767\) −13.1833 −0.476023
\(768\) 0 0
\(769\) −10.7889 −0.389058 −0.194529 0.980897i \(-0.562318\pi\)
−0.194529 + 0.980897i \(0.562318\pi\)
\(770\) 0 0
\(771\) 32.7250 1.17856
\(772\) 0 0
\(773\) −43.8167 −1.57598 −0.787988 0.615691i \(-0.788877\pi\)
−0.787988 + 0.615691i \(0.788877\pi\)
\(774\) 0 0
\(775\) 9.21110 0.330873
\(776\) 0 0
\(777\) 11.9083 0.427209
\(778\) 0 0
\(779\) −4.30278 −0.154163
\(780\) 0 0
\(781\) 9.51388 0.340433
\(782\) 0 0
\(783\) −14.7250 −0.526228
\(784\) 0 0
\(785\) 40.5416 1.44699
\(786\) 0 0
\(787\) −11.6333 −0.414683 −0.207341 0.978269i \(-0.566481\pi\)
−0.207341 + 0.978269i \(0.566481\pi\)
\(788\) 0 0
\(789\) 43.9361 1.56417
\(790\) 0 0
\(791\) −13.3028 −0.472992
\(792\) 0 0
\(793\) 16.3944 0.582184
\(794\) 0 0
\(795\) −38.7250 −1.37343
\(796\) 0 0
\(797\) 36.9083 1.30736 0.653680 0.756771i \(-0.273224\pi\)
0.653680 + 0.756771i \(0.273224\pi\)
\(798\) 0 0
\(799\) −13.9361 −0.493023
\(800\) 0 0
\(801\) −26.8444 −0.948501
\(802\) 0 0
\(803\) −71.0555 −2.50749
\(804\) 0 0
\(805\) 9.00000 0.317208
\(806\) 0 0
\(807\) −38.7250 −1.36318
\(808\) 0 0
\(809\) 10.0278 0.352557 0.176279 0.984340i \(-0.443594\pi\)
0.176279 + 0.984340i \(0.443594\pi\)
\(810\) 0 0
\(811\) −40.0555 −1.40654 −0.703270 0.710923i \(-0.748277\pi\)
−0.703270 + 0.710923i \(0.748277\pi\)
\(812\) 0 0
\(813\) −23.4222 −0.821453
\(814\) 0 0
\(815\) 27.9083 0.977586
\(816\) 0 0
\(817\) −10.0000 −0.349856
\(818\) 0 0
\(819\) −12.6972 −0.443677
\(820\) 0 0
\(821\) −8.36669 −0.292000 −0.146000 0.989285i \(-0.546640\pi\)
−0.146000 + 0.989285i \(0.546640\pi\)
\(822\) 0 0
\(823\) 34.2389 1.19349 0.596746 0.802430i \(-0.296460\pi\)
0.596746 + 0.802430i \(0.296460\pi\)
\(824\) 0 0
\(825\) 56.8444 1.97907
\(826\) 0 0
\(827\) 45.0000 1.56480 0.782402 0.622774i \(-0.213994\pi\)
0.782402 + 0.622774i \(0.213994\pi\)
\(828\) 0 0
\(829\) −18.0555 −0.627094 −0.313547 0.949573i \(-0.601517\pi\)
−0.313547 + 0.949573i \(0.601517\pi\)
\(830\) 0 0
\(831\) −21.8167 −0.756811
\(832\) 0 0
\(833\) −1.69722 −0.0588053
\(834\) 0 0
\(835\) 34.8167 1.20488
\(836\) 0 0
\(837\) 37.3305 1.29033
\(838\) 0 0
\(839\) 17.2111 0.594193 0.297097 0.954847i \(-0.403982\pi\)
0.297097 + 0.954847i \(0.403982\pi\)
\(840\) 0 0
\(841\) −28.1749 −0.971550
\(842\) 0 0
\(843\) 9.90833 0.341261
\(844\) 0 0
\(845\) 31.2666 1.07560
\(846\) 0 0
\(847\) −7.51388 −0.258180
\(848\) 0 0
\(849\) 40.7250 1.39768
\(850\) 0 0
\(851\) −10.8167 −0.370790
\(852\) 0 0
\(853\) −36.3305 −1.24393 −0.621967 0.783044i \(-0.713666\pi\)
−0.621967 + 0.783044i \(0.713666\pi\)
\(854\) 0 0
\(855\) 23.7250 0.811377
\(856\) 0 0
\(857\) 42.9083 1.46572 0.732860 0.680379i \(-0.238185\pi\)
0.732860 + 0.680379i \(0.238185\pi\)
\(858\) 0 0
\(859\) 23.6972 0.808539 0.404269 0.914640i \(-0.367526\pi\)
0.404269 + 0.914640i \(0.367526\pi\)
\(860\) 0 0
\(861\) −14.2111 −0.484313
\(862\) 0 0
\(863\) −37.5416 −1.27793 −0.638966 0.769235i \(-0.720638\pi\)
−0.638966 + 0.769235i \(0.720638\pi\)
\(864\) 0 0
\(865\) 41.4500 1.40934
\(866\) 0 0
\(867\) −46.6333 −1.58375
\(868\) 0 0
\(869\) 13.8167 0.468698
\(870\) 0 0
\(871\) −14.3028 −0.484631
\(872\) 0 0
\(873\) 18.9361 0.640889
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) −29.8167 −1.00684 −0.503418 0.864043i \(-0.667925\pi\)
−0.503418 + 0.864043i \(0.667925\pi\)
\(878\) 0 0
\(879\) 101.175 3.41255
\(880\) 0 0
\(881\) 48.7527 1.64252 0.821261 0.570553i \(-0.193271\pi\)
0.821261 + 0.570553i \(0.193271\pi\)
\(882\) 0 0
\(883\) 31.7889 1.06978 0.534891 0.844921i \(-0.320353\pi\)
0.534891 + 0.844921i \(0.320353\pi\)
\(884\) 0 0
\(885\) 81.3583 2.73483
\(886\) 0 0
\(887\) −40.8167 −1.37049 −0.685245 0.728313i \(-0.740305\pi\)
−0.685245 + 0.728313i \(0.740305\pi\)
\(888\) 0 0
\(889\) 9.81665 0.329240
\(890\) 0 0
\(891\) 128.294 4.29802
\(892\) 0 0
\(893\) −8.21110 −0.274774
\(894\) 0 0
\(895\) 62.1749 2.07828
\(896\) 0 0
\(897\) 15.9083 0.531164
\(898\) 0 0
\(899\) −2.09167 −0.0697612
\(900\) 0 0
\(901\) −6.63331 −0.220988
\(902\) 0 0
\(903\) −33.0278 −1.09909
\(904\) 0 0
\(905\) 42.9083 1.42632
\(906\) 0 0
\(907\) 26.8167 0.890432 0.445216 0.895423i \(-0.353127\pi\)
0.445216 + 0.895423i \(0.353127\pi\)
\(908\) 0 0
\(909\) −91.7805 −3.04417
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 9.00000 0.297857
\(914\) 0 0
\(915\) −101.175 −3.34474
\(916\) 0 0
\(917\) −2.48612 −0.0820990
\(918\) 0 0
\(919\) 44.0278 1.45234 0.726171 0.687514i \(-0.241298\pi\)
0.726171 + 0.687514i \(0.241298\pi\)
\(920\) 0 0
\(921\) −60.4500 −1.99189
\(922\) 0 0
\(923\) 3.55004 0.116851
\(924\) 0 0
\(925\) −14.4222 −0.474199
\(926\) 0 0
\(927\) 14.1472 0.464655
\(928\) 0 0
\(929\) −6.51388 −0.213713 −0.106857 0.994274i \(-0.534079\pi\)
−0.106857 + 0.994274i \(0.534079\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) −51.2389 −1.67748
\(934\) 0 0
\(935\) 21.9083 0.716479
\(936\) 0 0
\(937\) −4.11943 −0.134576 −0.0672879 0.997734i \(-0.521435\pi\)
−0.0672879 + 0.997734i \(0.521435\pi\)
\(938\) 0 0
\(939\) 29.8167 0.973030
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 12.9083 0.420353
\(944\) 0 0
\(945\) 48.6333 1.58204
\(946\) 0 0
\(947\) −26.0917 −0.847865 −0.423933 0.905694i \(-0.639351\pi\)
−0.423933 + 0.905694i \(0.639351\pi\)
\(948\) 0 0
\(949\) −26.5139 −0.860677
\(950\) 0 0
\(951\) 76.6611 2.48591
\(952\) 0 0
\(953\) −35.3305 −1.14447 −0.572234 0.820090i \(-0.693923\pi\)
−0.572234 + 0.820090i \(0.693923\pi\)
\(954\) 0 0
\(955\) −42.9916 −1.39118
\(956\) 0 0
\(957\) −12.9083 −0.417267
\(958\) 0 0
\(959\) 21.6333 0.698576
\(960\) 0 0
\(961\) −25.6972 −0.828943
\(962\) 0 0
\(963\) 159.836 5.15064
\(964\) 0 0
\(965\) −6.35829 −0.204681
\(966\) 0 0
\(967\) −30.3028 −0.974472 −0.487236 0.873270i \(-0.661995\pi\)
−0.487236 + 0.873270i \(0.661995\pi\)
\(968\) 0 0
\(969\) 5.60555 0.180076
\(970\) 0 0
\(971\) −24.6333 −0.790520 −0.395260 0.918569i \(-0.629346\pi\)
−0.395260 + 0.918569i \(0.629346\pi\)
\(972\) 0 0
\(973\) 5.00000 0.160293
\(974\) 0 0
\(975\) 21.2111 0.679299
\(976\) 0 0
\(977\) 47.4500 1.51806 0.759029 0.651056i \(-0.225674\pi\)
0.759029 + 0.651056i \(0.225674\pi\)
\(978\) 0 0
\(979\) −14.6056 −0.466795
\(980\) 0 0
\(981\) 33.3028 1.06328
\(982\) 0 0
\(983\) −23.0555 −0.735357 −0.367678 0.929953i \(-0.619847\pi\)
−0.367678 + 0.929953i \(0.619847\pi\)
\(984\) 0 0
\(985\) −11.7250 −0.373589
\(986\) 0 0
\(987\) −27.1194 −0.863221
\(988\) 0 0
\(989\) 30.0000 0.953945
\(990\) 0 0
\(991\) 53.0278 1.68448 0.842241 0.539101i \(-0.181236\pi\)
0.842241 + 0.539101i \(0.181236\pi\)
\(992\) 0 0
\(993\) −50.5416 −1.60389
\(994\) 0 0
\(995\) 46.2666 1.46675
\(996\) 0 0
\(997\) 37.7250 1.19476 0.597381 0.801958i \(-0.296208\pi\)
0.597381 + 0.801958i \(0.296208\pi\)
\(998\) 0 0
\(999\) −58.4500 −1.84927
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2128.2.a.l.1.2 2
4.3 odd 2 133.2.a.b.1.2 2
8.3 odd 2 8512.2.a.bh.1.2 2
8.5 even 2 8512.2.a.l.1.1 2
12.11 even 2 1197.2.a.h.1.1 2
20.19 odd 2 3325.2.a.n.1.1 2
28.3 even 6 931.2.f.g.324.1 4
28.11 odd 6 931.2.f.h.324.1 4
28.19 even 6 931.2.f.g.704.1 4
28.23 odd 6 931.2.f.h.704.1 4
28.27 even 2 931.2.a.g.1.2 2
76.75 even 2 2527.2.a.d.1.1 2
84.83 odd 2 8379.2.a.bf.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.a.b.1.2 2 4.3 odd 2
931.2.a.g.1.2 2 28.27 even 2
931.2.f.g.324.1 4 28.3 even 6
931.2.f.g.704.1 4 28.19 even 6
931.2.f.h.324.1 4 28.11 odd 6
931.2.f.h.704.1 4 28.23 odd 6
1197.2.a.h.1.1 2 12.11 even 2
2128.2.a.l.1.2 2 1.1 even 1 trivial
2527.2.a.d.1.1 2 76.75 even 2
3325.2.a.n.1.1 2 20.19 odd 2
8379.2.a.bf.1.1 2 84.83 odd 2
8512.2.a.l.1.1 2 8.5 even 2
8512.2.a.bh.1.2 2 8.3 odd 2