Properties

Label 2128.2.a.l.1.1
Level $2128$
Weight $2$
Character 2128.1
Self dual yes
Analytic conductor $16.992$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2128,2,Mod(1,2128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2128.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2128 = 2^{4} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2128.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.9921655501\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 2128.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.302776 q^{3} -3.00000 q^{5} -1.00000 q^{7} -2.90833 q^{9} +0.697224 q^{11} -5.60555 q^{13} +0.908327 q^{15} -5.30278 q^{17} -1.00000 q^{19} +0.302776 q^{21} +3.00000 q^{23} +4.00000 q^{25} +1.78890 q^{27} +9.90833 q^{29} -1.30278 q^{31} -0.211103 q^{33} +3.00000 q^{35} +3.60555 q^{37} +1.69722 q^{39} +0.697224 q^{41} +10.0000 q^{43} +8.72498 q^{45} -6.21110 q^{47} +1.00000 q^{49} +1.60555 q^{51} -6.90833 q^{53} -2.09167 q^{55} +0.302776 q^{57} +6.21110 q^{59} -4.21110 q^{61} +2.90833 q^{63} +16.8167 q^{65} +1.90833 q^{67} -0.908327 q^{69} -12.2111 q^{71} +1.51388 q^{73} -1.21110 q^{75} -0.697224 q^{77} -11.2111 q^{79} +8.18335 q^{81} +12.9083 q^{83} +15.9083 q^{85} -3.00000 q^{87} -10.6056 q^{89} +5.60555 q^{91} +0.394449 q^{93} +3.00000 q^{95} +9.60555 q^{97} -2.02776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 6 q^{5} - 2 q^{7} + 5 q^{9} + 5 q^{11} - 4 q^{13} - 9 q^{15} - 7 q^{17} - 2 q^{19} - 3 q^{21} + 6 q^{23} + 8 q^{25} + 18 q^{27} + 9 q^{29} + q^{31} + 14 q^{33} + 6 q^{35} + 7 q^{39} + 5 q^{41}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.302776 −0.174808 −0.0874038 0.996173i \(-0.527857\pi\)
−0.0874038 + 0.996173i \(0.527857\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.90833 −0.969442
\(10\) 0 0
\(11\) 0.697224 0.210221 0.105111 0.994461i \(-0.466480\pi\)
0.105111 + 0.994461i \(0.466480\pi\)
\(12\) 0 0
\(13\) −5.60555 −1.55470 −0.777350 0.629068i \(-0.783437\pi\)
−0.777350 + 0.629068i \(0.783437\pi\)
\(14\) 0 0
\(15\) 0.908327 0.234529
\(16\) 0 0
\(17\) −5.30278 −1.28611 −0.643056 0.765819i \(-0.722334\pi\)
−0.643056 + 0.765819i \(0.722334\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.302776 0.0660711
\(22\) 0 0
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 1.78890 0.344273
\(28\) 0 0
\(29\) 9.90833 1.83993 0.919965 0.392000i \(-0.128217\pi\)
0.919965 + 0.392000i \(0.128217\pi\)
\(30\) 0 0
\(31\) −1.30278 −0.233985 −0.116993 0.993133i \(-0.537325\pi\)
−0.116993 + 0.993133i \(0.537325\pi\)
\(32\) 0 0
\(33\) −0.211103 −0.0367482
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) 3.60555 0.592749 0.296374 0.955072i \(-0.404222\pi\)
0.296374 + 0.955072i \(0.404222\pi\)
\(38\) 0 0
\(39\) 1.69722 0.271773
\(40\) 0 0
\(41\) 0.697224 0.108888 0.0544441 0.998517i \(-0.482661\pi\)
0.0544441 + 0.998517i \(0.482661\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 8.72498 1.30064
\(46\) 0 0
\(47\) −6.21110 −0.905982 −0.452991 0.891515i \(-0.649643\pi\)
−0.452991 + 0.891515i \(0.649643\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.60555 0.224822
\(52\) 0 0
\(53\) −6.90833 −0.948932 −0.474466 0.880274i \(-0.657359\pi\)
−0.474466 + 0.880274i \(0.657359\pi\)
\(54\) 0 0
\(55\) −2.09167 −0.282041
\(56\) 0 0
\(57\) 0.302776 0.0401036
\(58\) 0 0
\(59\) 6.21110 0.808617 0.404308 0.914623i \(-0.367512\pi\)
0.404308 + 0.914623i \(0.367512\pi\)
\(60\) 0 0
\(61\) −4.21110 −0.539176 −0.269588 0.962976i \(-0.586888\pi\)
−0.269588 + 0.962976i \(0.586888\pi\)
\(62\) 0 0
\(63\) 2.90833 0.366415
\(64\) 0 0
\(65\) 16.8167 2.08585
\(66\) 0 0
\(67\) 1.90833 0.233139 0.116570 0.993183i \(-0.462810\pi\)
0.116570 + 0.993183i \(0.462810\pi\)
\(68\) 0 0
\(69\) −0.908327 −0.109350
\(70\) 0 0
\(71\) −12.2111 −1.44919 −0.724596 0.689174i \(-0.757973\pi\)
−0.724596 + 0.689174i \(0.757973\pi\)
\(72\) 0 0
\(73\) 1.51388 0.177186 0.0885930 0.996068i \(-0.471763\pi\)
0.0885930 + 0.996068i \(0.471763\pi\)
\(74\) 0 0
\(75\) −1.21110 −0.139846
\(76\) 0 0
\(77\) −0.697224 −0.0794561
\(78\) 0 0
\(79\) −11.2111 −1.26135 −0.630674 0.776048i \(-0.717221\pi\)
−0.630674 + 0.776048i \(0.717221\pi\)
\(80\) 0 0
\(81\) 8.18335 0.909261
\(82\) 0 0
\(83\) 12.9083 1.41687 0.708436 0.705775i \(-0.249401\pi\)
0.708436 + 0.705775i \(0.249401\pi\)
\(84\) 0 0
\(85\) 15.9083 1.72550
\(86\) 0 0
\(87\) −3.00000 −0.321634
\(88\) 0 0
\(89\) −10.6056 −1.12419 −0.562093 0.827074i \(-0.690004\pi\)
−0.562093 + 0.827074i \(0.690004\pi\)
\(90\) 0 0
\(91\) 5.60555 0.587621
\(92\) 0 0
\(93\) 0.394449 0.0409024
\(94\) 0 0
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) 9.60555 0.975296 0.487648 0.873040i \(-0.337855\pi\)
0.487648 + 0.873040i \(0.337855\pi\)
\(98\) 0 0
\(99\) −2.02776 −0.203797
\(100\) 0 0
\(101\) −4.39445 −0.437264 −0.218632 0.975807i \(-0.570159\pi\)
−0.218632 + 0.975807i \(0.570159\pi\)
\(102\) 0 0
\(103\) 16.2111 1.59733 0.798664 0.601778i \(-0.205541\pi\)
0.798664 + 0.601778i \(0.205541\pi\)
\(104\) 0 0
\(105\) −0.908327 −0.0886436
\(106\) 0 0
\(107\) 5.78890 0.559634 0.279817 0.960053i \(-0.409726\pi\)
0.279817 + 0.960053i \(0.409726\pi\)
\(108\) 0 0
\(109\) −10.2111 −0.978046 −0.489023 0.872271i \(-0.662647\pi\)
−0.489023 + 0.872271i \(0.662647\pi\)
\(110\) 0 0
\(111\) −1.09167 −0.103617
\(112\) 0 0
\(113\) 9.69722 0.912238 0.456119 0.889919i \(-0.349239\pi\)
0.456119 + 0.889919i \(0.349239\pi\)
\(114\) 0 0
\(115\) −9.00000 −0.839254
\(116\) 0 0
\(117\) 16.3028 1.50719
\(118\) 0 0
\(119\) 5.30278 0.486105
\(120\) 0 0
\(121\) −10.5139 −0.955807
\(122\) 0 0
\(123\) −0.211103 −0.0190345
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 11.8167 1.04856 0.524279 0.851546i \(-0.324335\pi\)
0.524279 + 0.851546i \(0.324335\pi\)
\(128\) 0 0
\(129\) −3.02776 −0.266579
\(130\) 0 0
\(131\) 20.5139 1.79231 0.896153 0.443745i \(-0.146351\pi\)
0.896153 + 0.443745i \(0.146351\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) −5.36669 −0.461891
\(136\) 0 0
\(137\) 21.6333 1.84826 0.924129 0.382080i \(-0.124792\pi\)
0.924129 + 0.382080i \(0.124792\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 1.88057 0.158373
\(142\) 0 0
\(143\) −3.90833 −0.326831
\(144\) 0 0
\(145\) −29.7250 −2.46853
\(146\) 0 0
\(147\) −0.302776 −0.0249725
\(148\) 0 0
\(149\) −6.21110 −0.508833 −0.254417 0.967095i \(-0.581883\pi\)
−0.254417 + 0.967095i \(0.581883\pi\)
\(150\) 0 0
\(151\) −5.90833 −0.480813 −0.240406 0.970672i \(-0.577281\pi\)
−0.240406 + 0.970672i \(0.577281\pi\)
\(152\) 0 0
\(153\) 15.4222 1.24681
\(154\) 0 0
\(155\) 3.90833 0.313924
\(156\) 0 0
\(157\) 4.51388 0.360247 0.180123 0.983644i \(-0.442350\pi\)
0.180123 + 0.983644i \(0.442350\pi\)
\(158\) 0 0
\(159\) 2.09167 0.165880
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) −5.69722 −0.446241 −0.223121 0.974791i \(-0.571624\pi\)
−0.223121 + 0.974791i \(0.571624\pi\)
\(164\) 0 0
\(165\) 0.633308 0.0493029
\(166\) 0 0
\(167\) −4.39445 −0.340053 −0.170026 0.985440i \(-0.554385\pi\)
−0.170026 + 0.985440i \(0.554385\pi\)
\(168\) 0 0
\(169\) 18.4222 1.41709
\(170\) 0 0
\(171\) 2.90833 0.222405
\(172\) 0 0
\(173\) 7.81665 0.594289 0.297145 0.954832i \(-0.403966\pi\)
0.297145 + 0.954832i \(0.403966\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) −1.88057 −0.141352
\(178\) 0 0
\(179\) 11.7250 0.876366 0.438183 0.898886i \(-0.355622\pi\)
0.438183 + 0.898886i \(0.355622\pi\)
\(180\) 0 0
\(181\) −10.6972 −0.795118 −0.397559 0.917577i \(-0.630143\pi\)
−0.397559 + 0.917577i \(0.630143\pi\)
\(182\) 0 0
\(183\) 1.27502 0.0942521
\(184\) 0 0
\(185\) −10.8167 −0.795256
\(186\) 0 0
\(187\) −3.69722 −0.270368
\(188\) 0 0
\(189\) −1.78890 −0.130123
\(190\) 0 0
\(191\) −25.3305 −1.83285 −0.916426 0.400203i \(-0.868940\pi\)
−0.916426 + 0.400203i \(0.868940\pi\)
\(192\) 0 0
\(193\) −23.1194 −1.66417 −0.832086 0.554646i \(-0.812854\pi\)
−0.832086 + 0.554646i \(0.812854\pi\)
\(194\) 0 0
\(195\) −5.09167 −0.364622
\(196\) 0 0
\(197\) −6.90833 −0.492198 −0.246099 0.969245i \(-0.579149\pi\)
−0.246099 + 0.969245i \(0.579149\pi\)
\(198\) 0 0
\(199\) 13.4222 0.951475 0.475737 0.879587i \(-0.342181\pi\)
0.475737 + 0.879587i \(0.342181\pi\)
\(200\) 0 0
\(201\) −0.577795 −0.0407545
\(202\) 0 0
\(203\) −9.90833 −0.695428
\(204\) 0 0
\(205\) −2.09167 −0.146089
\(206\) 0 0
\(207\) −8.72498 −0.606428
\(208\) 0 0
\(209\) −0.697224 −0.0482280
\(210\) 0 0
\(211\) 7.69722 0.529899 0.264949 0.964262i \(-0.414645\pi\)
0.264949 + 0.964262i \(0.414645\pi\)
\(212\) 0 0
\(213\) 3.69722 0.253330
\(214\) 0 0
\(215\) −30.0000 −2.04598
\(216\) 0 0
\(217\) 1.30278 0.0884382
\(218\) 0 0
\(219\) −0.458365 −0.0309735
\(220\) 0 0
\(221\) 29.7250 1.99952
\(222\) 0 0
\(223\) −12.8167 −0.858267 −0.429133 0.903241i \(-0.641181\pi\)
−0.429133 + 0.903241i \(0.641181\pi\)
\(224\) 0 0
\(225\) −11.6333 −0.775554
\(226\) 0 0
\(227\) 25.1194 1.66724 0.833618 0.552342i \(-0.186266\pi\)
0.833618 + 0.552342i \(0.186266\pi\)
\(228\) 0 0
\(229\) −0.788897 −0.0521318 −0.0260659 0.999660i \(-0.508298\pi\)
−0.0260659 + 0.999660i \(0.508298\pi\)
\(230\) 0 0
\(231\) 0.211103 0.0138895
\(232\) 0 0
\(233\) −2.09167 −0.137030 −0.0685150 0.997650i \(-0.521826\pi\)
−0.0685150 + 0.997650i \(0.521826\pi\)
\(234\) 0 0
\(235\) 18.6333 1.21550
\(236\) 0 0
\(237\) 3.39445 0.220493
\(238\) 0 0
\(239\) 27.4222 1.77379 0.886897 0.461966i \(-0.152856\pi\)
0.886897 + 0.461966i \(0.152856\pi\)
\(240\) 0 0
\(241\) −20.6056 −1.32732 −0.663660 0.748034i \(-0.730998\pi\)
−0.663660 + 0.748034i \(0.730998\pi\)
\(242\) 0 0
\(243\) −7.84441 −0.503219
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 5.60555 0.356673
\(248\) 0 0
\(249\) −3.90833 −0.247680
\(250\) 0 0
\(251\) 15.9083 1.00412 0.502062 0.864831i \(-0.332575\pi\)
0.502062 + 0.864831i \(0.332575\pi\)
\(252\) 0 0
\(253\) 2.09167 0.131502
\(254\) 0 0
\(255\) −4.81665 −0.301631
\(256\) 0 0
\(257\) −0.908327 −0.0566599 −0.0283299 0.999599i \(-0.509019\pi\)
−0.0283299 + 0.999599i \(0.509019\pi\)
\(258\) 0 0
\(259\) −3.60555 −0.224038
\(260\) 0 0
\(261\) −28.8167 −1.78371
\(262\) 0 0
\(263\) 9.69722 0.597956 0.298978 0.954260i \(-0.403354\pi\)
0.298978 + 0.954260i \(0.403354\pi\)
\(264\) 0 0
\(265\) 20.7250 1.27313
\(266\) 0 0
\(267\) 3.21110 0.196516
\(268\) 0 0
\(269\) 20.7250 1.26362 0.631812 0.775122i \(-0.282311\pi\)
0.631812 + 0.775122i \(0.282311\pi\)
\(270\) 0 0
\(271\) −17.9083 −1.08785 −0.543927 0.839133i \(-0.683063\pi\)
−0.543927 + 0.839133i \(0.683063\pi\)
\(272\) 0 0
\(273\) −1.69722 −0.102721
\(274\) 0 0
\(275\) 2.78890 0.168177
\(276\) 0 0
\(277\) 0.605551 0.0363840 0.0181920 0.999835i \(-0.494209\pi\)
0.0181920 + 0.999835i \(0.494209\pi\)
\(278\) 0 0
\(279\) 3.78890 0.226835
\(280\) 0 0
\(281\) 3.00000 0.178965 0.0894825 0.995988i \(-0.471479\pi\)
0.0894825 + 0.995988i \(0.471479\pi\)
\(282\) 0 0
\(283\) −27.3305 −1.62463 −0.812316 0.583218i \(-0.801793\pi\)
−0.812316 + 0.583218i \(0.801793\pi\)
\(284\) 0 0
\(285\) −0.908327 −0.0538046
\(286\) 0 0
\(287\) −0.697224 −0.0411559
\(288\) 0 0
\(289\) 11.1194 0.654084
\(290\) 0 0
\(291\) −2.90833 −0.170489
\(292\) 0 0
\(293\) −12.6333 −0.738046 −0.369023 0.929420i \(-0.620308\pi\)
−0.369023 + 0.929420i \(0.620308\pi\)
\(294\) 0 0
\(295\) −18.6333 −1.08487
\(296\) 0 0
\(297\) 1.24726 0.0723735
\(298\) 0 0
\(299\) −16.8167 −0.972532
\(300\) 0 0
\(301\) −10.0000 −0.576390
\(302\) 0 0
\(303\) 1.33053 0.0764371
\(304\) 0 0
\(305\) 12.6333 0.723381
\(306\) 0 0
\(307\) −14.6972 −0.838815 −0.419407 0.907798i \(-0.637762\pi\)
−0.419407 + 0.907798i \(0.637762\pi\)
\(308\) 0 0
\(309\) −4.90833 −0.279225
\(310\) 0 0
\(311\) 2.51388 0.142549 0.0712745 0.997457i \(-0.477293\pi\)
0.0712745 + 0.997457i \(0.477293\pi\)
\(312\) 0 0
\(313\) −27.0278 −1.52770 −0.763850 0.645394i \(-0.776693\pi\)
−0.763850 + 0.645394i \(0.776693\pi\)
\(314\) 0 0
\(315\) −8.72498 −0.491597
\(316\) 0 0
\(317\) 8.78890 0.493634 0.246817 0.969062i \(-0.420615\pi\)
0.246817 + 0.969062i \(0.420615\pi\)
\(318\) 0 0
\(319\) 6.90833 0.386792
\(320\) 0 0
\(321\) −1.75274 −0.0978282
\(322\) 0 0
\(323\) 5.30278 0.295054
\(324\) 0 0
\(325\) −22.4222 −1.24376
\(326\) 0 0
\(327\) 3.09167 0.170970
\(328\) 0 0
\(329\) 6.21110 0.342429
\(330\) 0 0
\(331\) −11.6972 −0.642938 −0.321469 0.946920i \(-0.604177\pi\)
−0.321469 + 0.946920i \(0.604177\pi\)
\(332\) 0 0
\(333\) −10.4861 −0.574636
\(334\) 0 0
\(335\) −5.72498 −0.312789
\(336\) 0 0
\(337\) 7.72498 0.420807 0.210403 0.977615i \(-0.432522\pi\)
0.210403 + 0.977615i \(0.432522\pi\)
\(338\) 0 0
\(339\) −2.93608 −0.159466
\(340\) 0 0
\(341\) −0.908327 −0.0491887
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 2.72498 0.146708
\(346\) 0 0
\(347\) 28.5416 1.53220 0.766098 0.642724i \(-0.222196\pi\)
0.766098 + 0.642724i \(0.222196\pi\)
\(348\) 0 0
\(349\) 7.51388 0.402209 0.201104 0.979570i \(-0.435547\pi\)
0.201104 + 0.979570i \(0.435547\pi\)
\(350\) 0 0
\(351\) −10.0278 −0.535242
\(352\) 0 0
\(353\) 9.90833 0.527367 0.263684 0.964609i \(-0.415063\pi\)
0.263684 + 0.964609i \(0.415063\pi\)
\(354\) 0 0
\(355\) 36.6333 1.94429
\(356\) 0 0
\(357\) −1.60555 −0.0849748
\(358\) 0 0
\(359\) 25.5416 1.34804 0.674018 0.738715i \(-0.264567\pi\)
0.674018 + 0.738715i \(0.264567\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 3.18335 0.167082
\(364\) 0 0
\(365\) −4.54163 −0.237720
\(366\) 0 0
\(367\) 0.0277564 0.00144887 0.000724436 1.00000i \(-0.499769\pi\)
0.000724436 1.00000i \(0.499769\pi\)
\(368\) 0 0
\(369\) −2.02776 −0.105561
\(370\) 0 0
\(371\) 6.90833 0.358662
\(372\) 0 0
\(373\) 24.1194 1.24886 0.624428 0.781082i \(-0.285332\pi\)
0.624428 + 0.781082i \(0.285332\pi\)
\(374\) 0 0
\(375\) −0.908327 −0.0469058
\(376\) 0 0
\(377\) −55.5416 −2.86054
\(378\) 0 0
\(379\) −6.81665 −0.350148 −0.175074 0.984555i \(-0.556016\pi\)
−0.175074 + 0.984555i \(0.556016\pi\)
\(380\) 0 0
\(381\) −3.57779 −0.183296
\(382\) 0 0
\(383\) −6.63331 −0.338946 −0.169473 0.985535i \(-0.554207\pi\)
−0.169473 + 0.985535i \(0.554207\pi\)
\(384\) 0 0
\(385\) 2.09167 0.106602
\(386\) 0 0
\(387\) −29.0833 −1.47839
\(388\) 0 0
\(389\) −24.1472 −1.22431 −0.612155 0.790737i \(-0.709697\pi\)
−0.612155 + 0.790737i \(0.709697\pi\)
\(390\) 0 0
\(391\) −15.9083 −0.804519
\(392\) 0 0
\(393\) −6.21110 −0.313309
\(394\) 0 0
\(395\) 33.6333 1.69228
\(396\) 0 0
\(397\) 37.0278 1.85837 0.929185 0.369615i \(-0.120510\pi\)
0.929185 + 0.369615i \(0.120510\pi\)
\(398\) 0 0
\(399\) −0.302776 −0.0151577
\(400\) 0 0
\(401\) −3.48612 −0.174089 −0.0870443 0.996204i \(-0.527742\pi\)
−0.0870443 + 0.996204i \(0.527742\pi\)
\(402\) 0 0
\(403\) 7.30278 0.363777
\(404\) 0 0
\(405\) −24.5500 −1.21990
\(406\) 0 0
\(407\) 2.51388 0.124608
\(408\) 0 0
\(409\) 20.9083 1.03385 0.516925 0.856031i \(-0.327077\pi\)
0.516925 + 0.856031i \(0.327077\pi\)
\(410\) 0 0
\(411\) −6.55004 −0.323090
\(412\) 0 0
\(413\) −6.21110 −0.305628
\(414\) 0 0
\(415\) −38.7250 −1.90093
\(416\) 0 0
\(417\) 1.51388 0.0741349
\(418\) 0 0
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 0 0
\(421\) −29.6056 −1.44289 −0.721443 0.692474i \(-0.756521\pi\)
−0.721443 + 0.692474i \(0.756521\pi\)
\(422\) 0 0
\(423\) 18.0639 0.878298
\(424\) 0 0
\(425\) −21.2111 −1.02889
\(426\) 0 0
\(427\) 4.21110 0.203790
\(428\) 0 0
\(429\) 1.18335 0.0571325
\(430\) 0 0
\(431\) 3.21110 0.154673 0.0773367 0.997005i \(-0.475358\pi\)
0.0773367 + 0.997005i \(0.475358\pi\)
\(432\) 0 0
\(433\) −0.577795 −0.0277671 −0.0138835 0.999904i \(-0.504419\pi\)
−0.0138835 + 0.999904i \(0.504419\pi\)
\(434\) 0 0
\(435\) 9.00000 0.431517
\(436\) 0 0
\(437\) −3.00000 −0.143509
\(438\) 0 0
\(439\) −22.7889 −1.08765 −0.543827 0.839197i \(-0.683025\pi\)
−0.543827 + 0.839197i \(0.683025\pi\)
\(440\) 0 0
\(441\) −2.90833 −0.138492
\(442\) 0 0
\(443\) 16.1194 0.765857 0.382929 0.923778i \(-0.374916\pi\)
0.382929 + 0.923778i \(0.374916\pi\)
\(444\) 0 0
\(445\) 31.8167 1.50825
\(446\) 0 0
\(447\) 1.88057 0.0889479
\(448\) 0 0
\(449\) −0.486122 −0.0229415 −0.0114708 0.999934i \(-0.503651\pi\)
−0.0114708 + 0.999934i \(0.503651\pi\)
\(450\) 0 0
\(451\) 0.486122 0.0228906
\(452\) 0 0
\(453\) 1.78890 0.0840497
\(454\) 0 0
\(455\) −16.8167 −0.788377
\(456\) 0 0
\(457\) 22.3028 1.04328 0.521640 0.853166i \(-0.325320\pi\)
0.521640 + 0.853166i \(0.325320\pi\)
\(458\) 0 0
\(459\) −9.48612 −0.442774
\(460\) 0 0
\(461\) 0.908327 0.0423050 0.0211525 0.999776i \(-0.493266\pi\)
0.0211525 + 0.999776i \(0.493266\pi\)
\(462\) 0 0
\(463\) 36.4500 1.69397 0.846987 0.531614i \(-0.178414\pi\)
0.846987 + 0.531614i \(0.178414\pi\)
\(464\) 0 0
\(465\) −1.18335 −0.0548764
\(466\) 0 0
\(467\) −16.5416 −0.765456 −0.382728 0.923861i \(-0.625015\pi\)
−0.382728 + 0.923861i \(0.625015\pi\)
\(468\) 0 0
\(469\) −1.90833 −0.0881183
\(470\) 0 0
\(471\) −1.36669 −0.0629739
\(472\) 0 0
\(473\) 6.97224 0.320584
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 20.0917 0.919935
\(478\) 0 0
\(479\) 0.697224 0.0318570 0.0159285 0.999873i \(-0.494930\pi\)
0.0159285 + 0.999873i \(0.494930\pi\)
\(480\) 0 0
\(481\) −20.2111 −0.921547
\(482\) 0 0
\(483\) 0.908327 0.0413303
\(484\) 0 0
\(485\) −28.8167 −1.30850
\(486\) 0 0
\(487\) −4.57779 −0.207440 −0.103720 0.994607i \(-0.533075\pi\)
−0.103720 + 0.994607i \(0.533075\pi\)
\(488\) 0 0
\(489\) 1.72498 0.0780063
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −52.5416 −2.36636
\(494\) 0 0
\(495\) 6.08327 0.273423
\(496\) 0 0
\(497\) 12.2111 0.547743
\(498\) 0 0
\(499\) −19.9361 −0.892462 −0.446231 0.894918i \(-0.647234\pi\)
−0.446231 + 0.894918i \(0.647234\pi\)
\(500\) 0 0
\(501\) 1.33053 0.0594438
\(502\) 0 0
\(503\) −6.42221 −0.286352 −0.143176 0.989697i \(-0.545731\pi\)
−0.143176 + 0.989697i \(0.545731\pi\)
\(504\) 0 0
\(505\) 13.1833 0.586651
\(506\) 0 0
\(507\) −5.57779 −0.247719
\(508\) 0 0
\(509\) 33.6333 1.49077 0.745385 0.666634i \(-0.232266\pi\)
0.745385 + 0.666634i \(0.232266\pi\)
\(510\) 0 0
\(511\) −1.51388 −0.0669700
\(512\) 0 0
\(513\) −1.78890 −0.0789818
\(514\) 0 0
\(515\) −48.6333 −2.14304
\(516\) 0 0
\(517\) −4.33053 −0.190457
\(518\) 0 0
\(519\) −2.36669 −0.103886
\(520\) 0 0
\(521\) 36.6333 1.60493 0.802467 0.596696i \(-0.203520\pi\)
0.802467 + 0.596696i \(0.203520\pi\)
\(522\) 0 0
\(523\) −37.6611 −1.64680 −0.823402 0.567459i \(-0.807927\pi\)
−0.823402 + 0.567459i \(0.807927\pi\)
\(524\) 0 0
\(525\) 1.21110 0.0528568
\(526\) 0 0
\(527\) 6.90833 0.300931
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −18.0639 −0.783907
\(532\) 0 0
\(533\) −3.90833 −0.169288
\(534\) 0 0
\(535\) −17.3667 −0.750828
\(536\) 0 0
\(537\) −3.55004 −0.153195
\(538\) 0 0
\(539\) 0.697224 0.0300316
\(540\) 0 0
\(541\) 16.7889 0.721811 0.360906 0.932602i \(-0.382468\pi\)
0.360906 + 0.932602i \(0.382468\pi\)
\(542\) 0 0
\(543\) 3.23886 0.138993
\(544\) 0 0
\(545\) 30.6333 1.31219
\(546\) 0 0
\(547\) 10.4861 0.448354 0.224177 0.974548i \(-0.428031\pi\)
0.224177 + 0.974548i \(0.428031\pi\)
\(548\) 0 0
\(549\) 12.2473 0.522700
\(550\) 0 0
\(551\) −9.90833 −0.422109
\(552\) 0 0
\(553\) 11.2111 0.476745
\(554\) 0 0
\(555\) 3.27502 0.139017
\(556\) 0 0
\(557\) −1.11943 −0.0474317 −0.0237159 0.999719i \(-0.507550\pi\)
−0.0237159 + 0.999719i \(0.507550\pi\)
\(558\) 0 0
\(559\) −56.0555 −2.37090
\(560\) 0 0
\(561\) 1.11943 0.0472623
\(562\) 0 0
\(563\) 24.2111 1.02038 0.510188 0.860063i \(-0.329576\pi\)
0.510188 + 0.860063i \(0.329576\pi\)
\(564\) 0 0
\(565\) −29.0917 −1.22390
\(566\) 0 0
\(567\) −8.18335 −0.343668
\(568\) 0 0
\(569\) 7.18335 0.301142 0.150571 0.988599i \(-0.451889\pi\)
0.150571 + 0.988599i \(0.451889\pi\)
\(570\) 0 0
\(571\) 2.39445 0.100205 0.0501023 0.998744i \(-0.484045\pi\)
0.0501023 + 0.998744i \(0.484045\pi\)
\(572\) 0 0
\(573\) 7.66947 0.320397
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 19.5139 0.812373 0.406187 0.913790i \(-0.366858\pi\)
0.406187 + 0.913790i \(0.366858\pi\)
\(578\) 0 0
\(579\) 7.00000 0.290910
\(580\) 0 0
\(581\) −12.9083 −0.535528
\(582\) 0 0
\(583\) −4.81665 −0.199485
\(584\) 0 0
\(585\) −48.9083 −2.02211
\(586\) 0 0
\(587\) −0.422205 −0.0174263 −0.00871313 0.999962i \(-0.502774\pi\)
−0.00871313 + 0.999962i \(0.502774\pi\)
\(588\) 0 0
\(589\) 1.30278 0.0536799
\(590\) 0 0
\(591\) 2.09167 0.0860399
\(592\) 0 0
\(593\) −4.81665 −0.197796 −0.0988981 0.995098i \(-0.531532\pi\)
−0.0988981 + 0.995098i \(0.531532\pi\)
\(594\) 0 0
\(595\) −15.9083 −0.652178
\(596\) 0 0
\(597\) −4.06392 −0.166325
\(598\) 0 0
\(599\) 0.908327 0.0371132 0.0185566 0.999828i \(-0.494093\pi\)
0.0185566 + 0.999828i \(0.494093\pi\)
\(600\) 0 0
\(601\) −27.5139 −1.12231 −0.561157 0.827709i \(-0.689644\pi\)
−0.561157 + 0.827709i \(0.689644\pi\)
\(602\) 0 0
\(603\) −5.55004 −0.226015
\(604\) 0 0
\(605\) 31.5416 1.28235
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 0 0
\(609\) 3.00000 0.121566
\(610\) 0 0
\(611\) 34.8167 1.40853
\(612\) 0 0
\(613\) −0.724981 −0.0292817 −0.0146408 0.999893i \(-0.504660\pi\)
−0.0146408 + 0.999893i \(0.504660\pi\)
\(614\) 0 0
\(615\) 0.633308 0.0255374
\(616\) 0 0
\(617\) −10.8806 −0.438035 −0.219018 0.975721i \(-0.570285\pi\)
−0.219018 + 0.975721i \(0.570285\pi\)
\(618\) 0 0
\(619\) 41.3305 1.66121 0.830607 0.556859i \(-0.187994\pi\)
0.830607 + 0.556859i \(0.187994\pi\)
\(620\) 0 0
\(621\) 5.36669 0.215358
\(622\) 0 0
\(623\) 10.6056 0.424902
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0.211103 0.00843062
\(628\) 0 0
\(629\) −19.1194 −0.762342
\(630\) 0 0
\(631\) −13.2389 −0.527031 −0.263515 0.964655i \(-0.584882\pi\)
−0.263515 + 0.964655i \(0.584882\pi\)
\(632\) 0 0
\(633\) −2.33053 −0.0926303
\(634\) 0 0
\(635\) −35.4500 −1.40679
\(636\) 0 0
\(637\) −5.60555 −0.222100
\(638\) 0 0
\(639\) 35.5139 1.40491
\(640\) 0 0
\(641\) 9.90833 0.391355 0.195678 0.980668i \(-0.437309\pi\)
0.195678 + 0.980668i \(0.437309\pi\)
\(642\) 0 0
\(643\) −30.3944 −1.19864 −0.599320 0.800510i \(-0.704562\pi\)
−0.599320 + 0.800510i \(0.704562\pi\)
\(644\) 0 0
\(645\) 9.08327 0.357653
\(646\) 0 0
\(647\) −15.4222 −0.606309 −0.303155 0.952941i \(-0.598040\pi\)
−0.303155 + 0.952941i \(0.598040\pi\)
\(648\) 0 0
\(649\) 4.33053 0.169988
\(650\) 0 0
\(651\) −0.394449 −0.0154597
\(652\) 0 0
\(653\) −16.8167 −0.658087 −0.329043 0.944315i \(-0.606726\pi\)
−0.329043 + 0.944315i \(0.606726\pi\)
\(654\) 0 0
\(655\) −61.5416 −2.40463
\(656\) 0 0
\(657\) −4.40285 −0.171772
\(658\) 0 0
\(659\) −16.3305 −0.636147 −0.318074 0.948066i \(-0.603036\pi\)
−0.318074 + 0.948066i \(0.603036\pi\)
\(660\) 0 0
\(661\) −0.788897 −0.0306846 −0.0153423 0.999882i \(-0.504884\pi\)
−0.0153423 + 0.999882i \(0.504884\pi\)
\(662\) 0 0
\(663\) −9.00000 −0.349531
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 29.7250 1.15096
\(668\) 0 0
\(669\) 3.88057 0.150032
\(670\) 0 0
\(671\) −2.93608 −0.113346
\(672\) 0 0
\(673\) 14.9083 0.574674 0.287337 0.957830i \(-0.407230\pi\)
0.287337 + 0.957830i \(0.407230\pi\)
\(674\) 0 0
\(675\) 7.15559 0.275419
\(676\) 0 0
\(677\) 17.9361 0.689340 0.344670 0.938724i \(-0.387991\pi\)
0.344670 + 0.938724i \(0.387991\pi\)
\(678\) 0 0
\(679\) −9.60555 −0.368627
\(680\) 0 0
\(681\) −7.60555 −0.291445
\(682\) 0 0
\(683\) −12.2111 −0.467245 −0.233622 0.972327i \(-0.575058\pi\)
−0.233622 + 0.972327i \(0.575058\pi\)
\(684\) 0 0
\(685\) −64.8999 −2.47970
\(686\) 0 0
\(687\) 0.238859 0.00911304
\(688\) 0 0
\(689\) 38.7250 1.47530
\(690\) 0 0
\(691\) 41.8167 1.59078 0.795390 0.606098i \(-0.207266\pi\)
0.795390 + 0.606098i \(0.207266\pi\)
\(692\) 0 0
\(693\) 2.02776 0.0770281
\(694\) 0 0
\(695\) 15.0000 0.568982
\(696\) 0 0
\(697\) −3.69722 −0.140042
\(698\) 0 0
\(699\) 0.633308 0.0239539
\(700\) 0 0
\(701\) 21.2111 0.801132 0.400566 0.916268i \(-0.368813\pi\)
0.400566 + 0.916268i \(0.368813\pi\)
\(702\) 0 0
\(703\) −3.60555 −0.135986
\(704\) 0 0
\(705\) −5.64171 −0.212479
\(706\) 0 0
\(707\) 4.39445 0.165270
\(708\) 0 0
\(709\) −11.6056 −0.435856 −0.217928 0.975965i \(-0.569930\pi\)
−0.217928 + 0.975965i \(0.569930\pi\)
\(710\) 0 0
\(711\) 32.6056 1.22280
\(712\) 0 0
\(713\) −3.90833 −0.146368
\(714\) 0 0
\(715\) 11.7250 0.438489
\(716\) 0 0
\(717\) −8.30278 −0.310073
\(718\) 0 0
\(719\) 27.6333 1.03055 0.515274 0.857025i \(-0.327690\pi\)
0.515274 + 0.857025i \(0.327690\pi\)
\(720\) 0 0
\(721\) −16.2111 −0.603733
\(722\) 0 0
\(723\) 6.23886 0.232026
\(724\) 0 0
\(725\) 39.6333 1.47194
\(726\) 0 0
\(727\) 27.6611 1.02589 0.512946 0.858421i \(-0.328554\pi\)
0.512946 + 0.858421i \(0.328554\pi\)
\(728\) 0 0
\(729\) −22.1749 −0.821294
\(730\) 0 0
\(731\) −53.0278 −1.96130
\(732\) 0 0
\(733\) 32.0000 1.18195 0.590973 0.806691i \(-0.298744\pi\)
0.590973 + 0.806691i \(0.298744\pi\)
\(734\) 0 0
\(735\) 0.908327 0.0335041
\(736\) 0 0
\(737\) 1.33053 0.0490108
\(738\) 0 0
\(739\) 18.5778 0.683395 0.341698 0.939810i \(-0.388998\pi\)
0.341698 + 0.939810i \(0.388998\pi\)
\(740\) 0 0
\(741\) −1.69722 −0.0623491
\(742\) 0 0
\(743\) 12.6333 0.463471 0.231736 0.972779i \(-0.425560\pi\)
0.231736 + 0.972779i \(0.425560\pi\)
\(744\) 0 0
\(745\) 18.6333 0.682672
\(746\) 0 0
\(747\) −37.5416 −1.37358
\(748\) 0 0
\(749\) −5.78890 −0.211522
\(750\) 0 0
\(751\) −26.3583 −0.961828 −0.480914 0.876768i \(-0.659695\pi\)
−0.480914 + 0.876768i \(0.659695\pi\)
\(752\) 0 0
\(753\) −4.81665 −0.175529
\(754\) 0 0
\(755\) 17.7250 0.645078
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) −0.633308 −0.0229876
\(760\) 0 0
\(761\) −24.2111 −0.877652 −0.438826 0.898572i \(-0.644606\pi\)
−0.438826 + 0.898572i \(0.644606\pi\)
\(762\) 0 0
\(763\) 10.2111 0.369667
\(764\) 0 0
\(765\) −46.2666 −1.67277
\(766\) 0 0
\(767\) −34.8167 −1.25716
\(768\) 0 0
\(769\) −25.2111 −0.909136 −0.454568 0.890712i \(-0.650206\pi\)
−0.454568 + 0.890712i \(0.650206\pi\)
\(770\) 0 0
\(771\) 0.275019 0.00990458
\(772\) 0 0
\(773\) −22.1833 −0.797880 −0.398940 0.916977i \(-0.630622\pi\)
−0.398940 + 0.916977i \(0.630622\pi\)
\(774\) 0 0
\(775\) −5.21110 −0.187188
\(776\) 0 0
\(777\) 1.09167 0.0391636
\(778\) 0 0
\(779\) −0.697224 −0.0249807
\(780\) 0 0
\(781\) −8.51388 −0.304651
\(782\) 0 0
\(783\) 17.7250 0.633439
\(784\) 0 0
\(785\) −13.5416 −0.483322
\(786\) 0 0
\(787\) 31.6333 1.12761 0.563803 0.825909i \(-0.309338\pi\)
0.563803 + 0.825909i \(0.309338\pi\)
\(788\) 0 0
\(789\) −2.93608 −0.104527
\(790\) 0 0
\(791\) −9.69722 −0.344794
\(792\) 0 0
\(793\) 23.6056 0.838258
\(794\) 0 0
\(795\) −6.27502 −0.222552
\(796\) 0 0
\(797\) 26.0917 0.924214 0.462107 0.886824i \(-0.347094\pi\)
0.462107 + 0.886824i \(0.347094\pi\)
\(798\) 0 0
\(799\) 32.9361 1.16519
\(800\) 0 0
\(801\) 30.8444 1.08983
\(802\) 0 0
\(803\) 1.05551 0.0372482
\(804\) 0 0
\(805\) 9.00000 0.317208
\(806\) 0 0
\(807\) −6.27502 −0.220891
\(808\) 0 0
\(809\) −26.0278 −0.915087 −0.457544 0.889187i \(-0.651271\pi\)
−0.457544 + 0.889187i \(0.651271\pi\)
\(810\) 0 0
\(811\) 32.0555 1.12562 0.562811 0.826586i \(-0.309720\pi\)
0.562811 + 0.826586i \(0.309720\pi\)
\(812\) 0 0
\(813\) 5.42221 0.190165
\(814\) 0 0
\(815\) 17.0917 0.598695
\(816\) 0 0
\(817\) −10.0000 −0.349856
\(818\) 0 0
\(819\) −16.3028 −0.569665
\(820\) 0 0
\(821\) −51.6333 −1.80201 −0.901007 0.433804i \(-0.857171\pi\)
−0.901007 + 0.433804i \(0.857171\pi\)
\(822\) 0 0
\(823\) −16.2389 −0.566051 −0.283026 0.959112i \(-0.591338\pi\)
−0.283026 + 0.959112i \(0.591338\pi\)
\(824\) 0 0
\(825\) −0.844410 −0.0293986
\(826\) 0 0
\(827\) 45.0000 1.56480 0.782402 0.622774i \(-0.213994\pi\)
0.782402 + 0.622774i \(0.213994\pi\)
\(828\) 0 0
\(829\) 54.0555 1.87743 0.938713 0.344700i \(-0.112019\pi\)
0.938713 + 0.344700i \(0.112019\pi\)
\(830\) 0 0
\(831\) −0.183346 −0.00636021
\(832\) 0 0
\(833\) −5.30278 −0.183730
\(834\) 0 0
\(835\) 13.1833 0.456229
\(836\) 0 0
\(837\) −2.33053 −0.0805550
\(838\) 0 0
\(839\) 2.78890 0.0962834 0.0481417 0.998841i \(-0.484670\pi\)
0.0481417 + 0.998841i \(0.484670\pi\)
\(840\) 0 0
\(841\) 69.1749 2.38534
\(842\) 0 0
\(843\) −0.908327 −0.0312844
\(844\) 0 0
\(845\) −55.2666 −1.90123
\(846\) 0 0
\(847\) 10.5139 0.361261
\(848\) 0 0
\(849\) 8.27502 0.283998
\(850\) 0 0
\(851\) 10.8167 0.370790
\(852\) 0 0
\(853\) 3.33053 0.114035 0.0570176 0.998373i \(-0.481841\pi\)
0.0570176 + 0.998373i \(0.481841\pi\)
\(854\) 0 0
\(855\) −8.72498 −0.298388
\(856\) 0 0
\(857\) 32.0917 1.09623 0.548115 0.836403i \(-0.315345\pi\)
0.548115 + 0.836403i \(0.315345\pi\)
\(858\) 0 0
\(859\) 27.3028 0.931559 0.465779 0.884901i \(-0.345774\pi\)
0.465779 + 0.884901i \(0.345774\pi\)
\(860\) 0 0
\(861\) 0.211103 0.00719436
\(862\) 0 0
\(863\) 16.5416 0.563084 0.281542 0.959549i \(-0.409154\pi\)
0.281542 + 0.959549i \(0.409154\pi\)
\(864\) 0 0
\(865\) −23.4500 −0.797323
\(866\) 0 0
\(867\) −3.36669 −0.114339
\(868\) 0 0
\(869\) −7.81665 −0.265162
\(870\) 0 0
\(871\) −10.6972 −0.362462
\(872\) 0 0
\(873\) −27.9361 −0.945493
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) −8.18335 −0.276332 −0.138166 0.990409i \(-0.544121\pi\)
−0.138166 + 0.990409i \(0.544121\pi\)
\(878\) 0 0
\(879\) 3.82506 0.129016
\(880\) 0 0
\(881\) −19.7527 −0.665487 −0.332743 0.943017i \(-0.607974\pi\)
−0.332743 + 0.943017i \(0.607974\pi\)
\(882\) 0 0
\(883\) 46.2111 1.55513 0.777564 0.628804i \(-0.216455\pi\)
0.777564 + 0.628804i \(0.216455\pi\)
\(884\) 0 0
\(885\) 5.64171 0.189644
\(886\) 0 0
\(887\) −19.1833 −0.644114 −0.322057 0.946720i \(-0.604374\pi\)
−0.322057 + 0.946720i \(0.604374\pi\)
\(888\) 0 0
\(889\) −11.8167 −0.396318
\(890\) 0 0
\(891\) 5.70563 0.191146
\(892\) 0 0
\(893\) 6.21110 0.207847
\(894\) 0 0
\(895\) −35.1749 −1.17577
\(896\) 0 0
\(897\) 5.09167 0.170006
\(898\) 0 0
\(899\) −12.9083 −0.430517
\(900\) 0 0
\(901\) 36.6333 1.22043
\(902\) 0 0
\(903\) 3.02776 0.100757
\(904\) 0 0
\(905\) 32.0917 1.06676
\(906\) 0 0
\(907\) 5.18335 0.172110 0.0860551 0.996290i \(-0.472574\pi\)
0.0860551 + 0.996290i \(0.472574\pi\)
\(908\) 0 0
\(909\) 12.7805 0.423902
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 9.00000 0.297857
\(914\) 0 0
\(915\) −3.82506 −0.126453
\(916\) 0 0
\(917\) −20.5139 −0.677428
\(918\) 0 0
\(919\) 7.97224 0.262980 0.131490 0.991317i \(-0.458024\pi\)
0.131490 + 0.991317i \(0.458024\pi\)
\(920\) 0 0
\(921\) 4.44996 0.146631
\(922\) 0 0
\(923\) 68.4500 2.25306
\(924\) 0 0
\(925\) 14.4222 0.474199
\(926\) 0 0
\(927\) −47.1472 −1.54852
\(928\) 0 0
\(929\) 11.5139 0.377758 0.188879 0.982000i \(-0.439515\pi\)
0.188879 + 0.982000i \(0.439515\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) −0.761141 −0.0249186
\(934\) 0 0
\(935\) 11.0917 0.362736
\(936\) 0 0
\(937\) 21.1194 0.689942 0.344971 0.938613i \(-0.387889\pi\)
0.344971 + 0.938613i \(0.387889\pi\)
\(938\) 0 0
\(939\) 8.18335 0.267053
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 2.09167 0.0681142
\(944\) 0 0
\(945\) 5.36669 0.174579
\(946\) 0 0
\(947\) −36.9083 −1.19936 −0.599680 0.800240i \(-0.704705\pi\)
−0.599680 + 0.800240i \(0.704705\pi\)
\(948\) 0 0
\(949\) −8.48612 −0.275471
\(950\) 0 0
\(951\) −2.66106 −0.0862909
\(952\) 0 0
\(953\) 4.33053 0.140280 0.0701398 0.997537i \(-0.477655\pi\)
0.0701398 + 0.997537i \(0.477655\pi\)
\(954\) 0 0
\(955\) 75.9916 2.45903
\(956\) 0 0
\(957\) −2.09167 −0.0676142
\(958\) 0 0
\(959\) −21.6333 −0.698576
\(960\) 0 0
\(961\) −29.3028 −0.945251
\(962\) 0 0
\(963\) −16.8360 −0.542533
\(964\) 0 0
\(965\) 69.3583 2.23272
\(966\) 0 0
\(967\) −26.6972 −0.858525 −0.429262 0.903180i \(-0.641226\pi\)
−0.429262 + 0.903180i \(0.641226\pi\)
\(968\) 0 0
\(969\) −1.60555 −0.0515777
\(970\) 0 0
\(971\) 18.6333 0.597971 0.298986 0.954258i \(-0.403352\pi\)
0.298986 + 0.954258i \(0.403352\pi\)
\(972\) 0 0
\(973\) 5.00000 0.160293
\(974\) 0 0
\(975\) 6.78890 0.217419
\(976\) 0 0
\(977\) −17.4500 −0.558274 −0.279137 0.960251i \(-0.590048\pi\)
−0.279137 + 0.960251i \(0.590048\pi\)
\(978\) 0 0
\(979\) −7.39445 −0.236328
\(980\) 0 0
\(981\) 29.6972 0.948159
\(982\) 0 0
\(983\) 49.0555 1.56463 0.782314 0.622884i \(-0.214039\pi\)
0.782314 + 0.622884i \(0.214039\pi\)
\(984\) 0 0
\(985\) 20.7250 0.660353
\(986\) 0 0
\(987\) −1.88057 −0.0598592
\(988\) 0 0
\(989\) 30.0000 0.953945
\(990\) 0 0
\(991\) 16.9722 0.539141 0.269571 0.962981i \(-0.413118\pi\)
0.269571 + 0.962981i \(0.413118\pi\)
\(992\) 0 0
\(993\) 3.54163 0.112390
\(994\) 0 0
\(995\) −40.2666 −1.27654
\(996\) 0 0
\(997\) 5.27502 0.167062 0.0835308 0.996505i \(-0.473380\pi\)
0.0835308 + 0.996505i \(0.473380\pi\)
\(998\) 0 0
\(999\) 6.44996 0.204068
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2128.2.a.l.1.1 2
4.3 odd 2 133.2.a.b.1.1 2
8.3 odd 2 8512.2.a.bh.1.1 2
8.5 even 2 8512.2.a.l.1.2 2
12.11 even 2 1197.2.a.h.1.2 2
20.19 odd 2 3325.2.a.n.1.2 2
28.3 even 6 931.2.f.g.324.2 4
28.11 odd 6 931.2.f.h.324.2 4
28.19 even 6 931.2.f.g.704.2 4
28.23 odd 6 931.2.f.h.704.2 4
28.27 even 2 931.2.a.g.1.1 2
76.75 even 2 2527.2.a.d.1.2 2
84.83 odd 2 8379.2.a.bf.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.a.b.1.1 2 4.3 odd 2
931.2.a.g.1.1 2 28.27 even 2
931.2.f.g.324.2 4 28.3 even 6
931.2.f.g.704.2 4 28.19 even 6
931.2.f.h.324.2 4 28.11 odd 6
931.2.f.h.704.2 4 28.23 odd 6
1197.2.a.h.1.2 2 12.11 even 2
2128.2.a.l.1.1 2 1.1 even 1 trivial
2527.2.a.d.1.2 2 76.75 even 2
3325.2.a.n.1.2 2 20.19 odd 2
8379.2.a.bf.1.2 2 84.83 odd 2
8512.2.a.l.1.2 2 8.5 even 2
8512.2.a.bh.1.1 2 8.3 odd 2