Properties

Label 2128.1.cl.a
Level 21282128
Weight 11
Character orbit 2128.cl
Analytic conductor 1.0621.062
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2128,1,Mod(417,2128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2128, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2128.417"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2128=24719 2128 = 2^{4} \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2128.cl (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.062010346881.06201034688
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 532)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.3724.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+2ζ62q5+ζ6q7+ζ62q9ζ6q11+ζ6q17ζ62q19+ζ62q233ζ6q252q352q432ζ6q45++q99+O(q100) q + 2 \zeta_{6}^{2} q^{5} + \zeta_{6} q^{7} + \zeta_{6}^{2} q^{9} - \zeta_{6} q^{11} + \zeta_{6} q^{17} - \zeta_{6}^{2} q^{19} + \zeta_{6}^{2} q^{23} - 3 \zeta_{6} q^{25} - 2 q^{35} - 2 q^{43} - 2 \zeta_{6} q^{45} + \cdots + q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q5+q7q9q11+q17+q19q233q254q354q432q45q47q49+4q55+q612q63+q73+q77q81+2q83++2q99+O(q100) 2 q - 2 q^{5} + q^{7} - q^{9} - q^{11} + q^{17} + q^{19} - q^{23} - 3 q^{25} - 4 q^{35} - 4 q^{43} - 2 q^{45} - q^{47} - q^{49} + 4 q^{55} + q^{61} - 2 q^{63} + q^{73} + q^{77} - q^{81} + 2 q^{83}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2128Z)×\left(\mathbb{Z}/2128\mathbb{Z}\right)^\times.

nn 533533 799799 913913 10091009
χ(n)\chi(n) 11 11 ζ62\zeta_{6}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
417.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −1.00000 1.73205i 0 0.500000 0.866025i 0 −0.500000 0.866025i 0
1633.1 0 0 0 −1.00000 + 1.73205i 0 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
7.c even 3 1 inner
133.r odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2128.1.cl.a 2
4.b odd 2 1 532.1.bc.a 2
7.c even 3 1 inner 2128.1.cl.a 2
19.b odd 2 1 CM 2128.1.cl.a 2
28.d even 2 1 3724.1.bc.d 2
28.f even 6 1 3724.1.e.a 1
28.f even 6 1 3724.1.bc.d 2
28.g odd 6 1 532.1.bc.a 2
28.g odd 6 1 3724.1.e.e 1
76.d even 2 1 532.1.bc.a 2
133.r odd 6 1 inner 2128.1.cl.a 2
532.b odd 2 1 3724.1.bc.d 2
532.t even 6 1 532.1.bc.a 2
532.t even 6 1 3724.1.e.e 1
532.bh odd 6 1 3724.1.e.a 1
532.bh odd 6 1 3724.1.bc.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
532.1.bc.a 2 4.b odd 2 1
532.1.bc.a 2 28.g odd 6 1
532.1.bc.a 2 76.d even 2 1
532.1.bc.a 2 532.t even 6 1
2128.1.cl.a 2 1.a even 1 1 trivial
2128.1.cl.a 2 7.c even 3 1 inner
2128.1.cl.a 2 19.b odd 2 1 CM
2128.1.cl.a 2 133.r odd 6 1 inner
3724.1.e.a 1 28.f even 6 1
3724.1.e.a 1 532.bh odd 6 1
3724.1.e.e 1 28.g odd 6 1
3724.1.e.e 1 532.t even 6 1
3724.1.bc.d 2 28.d even 2 1
3724.1.bc.d 2 28.f even 6 1
3724.1.bc.d 2 532.b odd 2 1
3724.1.bc.d 2 532.bh odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2128,[χ])S_{1}^{\mathrm{new}}(2128, [\chi]):

T3 T_{3} Copy content Toggle raw display
T52+2T5+4 T_{5}^{2} + 2T_{5} + 4 Copy content Toggle raw display
T112+T11+1 T_{11}^{2} + T_{11} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
77 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1111 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4747 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T1)2 (T - 1)^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less