Properties

Label 2116.2.a
Level $2116$
Weight $2$
Character orbit 2116.a
Rep. character $\chi_{2116}(1,\cdot)$
Character field $\Q$
Dimension $42$
Newform subspaces $10$
Sturm bound $552$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2116 = 2^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2116.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(552\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2116))\).

Total New Old
Modular forms 312 42 270
Cusp forms 241 42 199
Eisenstein series 71 0 71

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(-\)\(+\)\(-\)\(24\)
\(-\)\(-\)\(+\)\(18\)
Plus space\(+\)\(18\)
Minus space\(-\)\(24\)

Trace form

\( 42 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 40 q^{9} - 2 q^{11} + 6 q^{13} - 6 q^{15} + 2 q^{17} - 14 q^{21} + 50 q^{25} + 14 q^{27} + 12 q^{29} + 6 q^{33} - 6 q^{35} - 10 q^{37} - 14 q^{39} + 8 q^{41} + 12 q^{45}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2116))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
2116.2.a.a 2116.a 1.a $1$ $16.896$ \(\Q\) None 92.2.a.a \(0\) \(-3\) \(2\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+2q^{5}+4q^{7}+6q^{9}-2q^{11}+\cdots\)
2116.2.a.b 2116.a 1.a $1$ $16.896$ \(\Q\) None 2116.2.a.b \(0\) \(0\) \(-1\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}-3q^{9}+4q^{11}+q^{13}+\cdots\)
2116.2.a.c 2116.a 1.a $1$ $16.896$ \(\Q\) None 2116.2.a.b \(0\) \(0\) \(1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}-3q^{9}-4q^{11}+q^{13}+\cdots\)
2116.2.a.d 2116.a 1.a $1$ $16.896$ \(\Q\) None 92.2.a.b \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}-2q^{9}-q^{13}+6q^{17}+\cdots\)
2116.2.a.e 2116.a 1.a $2$ $16.896$ \(\Q(\sqrt{3}) \) None 2116.2.a.e \(0\) \(-4\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+\beta q^{5}+q^{9}+2\beta q^{11}+q^{13}+\cdots\)
2116.2.a.f 2116.a 1.a $2$ $16.896$ \(\Q(\sqrt{3}) \) None 2116.2.a.f \(0\) \(2\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta q^{5}+\beta q^{7}-2q^{9}+\beta q^{11}+\cdots\)
2116.2.a.g 2116.a 1.a $6$ $16.896$ 6.6.197448192.1 None 2116.2.a.g \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{5}q^{3}+\beta _{3}q^{5}+(-\beta _{1}+\beta _{3})q^{7}+\cdots\)
2116.2.a.h 2116.a 1.a $8$ $16.896$ 8.8.5780865024.1 None 2116.2.a.h \(0\) \(4\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{2}-\beta _{5})q^{3}-\beta _{7}q^{5}+(\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots\)
2116.2.a.i 2116.a 1.a $10$ $16.896$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 92.2.e.a \(0\) \(1\) \(-12\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{4})q^{3}+(-1-\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\)
2116.2.a.j 2116.a 1.a $10$ $16.896$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 92.2.e.a \(0\) \(1\) \(12\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{4})q^{3}+(1+\beta _{2}-\beta _{3}-\beta _{6}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2116))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2116)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1058))\)\(^{\oplus 2}\)