Properties

Label 2112.4.a.u.1.1
Level $2112$
Weight $4$
Character 2112.1
Self dual yes
Analytic conductor $124.612$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2112,4,Mod(1,2112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2112.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(124.612033932\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +4.00000 q^{5} -26.0000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} +4.00000 q^{5} -26.0000 q^{7} +9.00000 q^{9} -11.0000 q^{11} +32.0000 q^{13} +12.0000 q^{15} +74.0000 q^{17} +60.0000 q^{19} -78.0000 q^{21} -182.000 q^{23} -109.000 q^{25} +27.0000 q^{27} +90.0000 q^{29} -8.00000 q^{31} -33.0000 q^{33} -104.000 q^{35} +66.0000 q^{37} +96.0000 q^{39} +422.000 q^{41} -408.000 q^{43} +36.0000 q^{45} -506.000 q^{47} +333.000 q^{49} +222.000 q^{51} -348.000 q^{53} -44.0000 q^{55} +180.000 q^{57} +200.000 q^{59} -132.000 q^{61} -234.000 q^{63} +128.000 q^{65} +1036.00 q^{67} -546.000 q^{69} +762.000 q^{71} -542.000 q^{73} -327.000 q^{75} +286.000 q^{77} -550.000 q^{79} +81.0000 q^{81} +132.000 q^{83} +296.000 q^{85} +270.000 q^{87} +570.000 q^{89} -832.000 q^{91} -24.0000 q^{93} +240.000 q^{95} +14.0000 q^{97} -99.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 4.00000 0.357771 0.178885 0.983870i \(-0.442751\pi\)
0.178885 + 0.983870i \(0.442751\pi\)
\(6\) 0 0
\(7\) −26.0000 −1.40387 −0.701934 0.712242i \(-0.747680\pi\)
−0.701934 + 0.712242i \(0.747680\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 32.0000 0.682708 0.341354 0.939935i \(-0.389115\pi\)
0.341354 + 0.939935i \(0.389115\pi\)
\(14\) 0 0
\(15\) 12.0000 0.206559
\(16\) 0 0
\(17\) 74.0000 1.05574 0.527872 0.849324i \(-0.322990\pi\)
0.527872 + 0.849324i \(0.322990\pi\)
\(18\) 0 0
\(19\) 60.0000 0.724471 0.362235 0.932087i \(-0.382014\pi\)
0.362235 + 0.932087i \(0.382014\pi\)
\(20\) 0 0
\(21\) −78.0000 −0.810524
\(22\) 0 0
\(23\) −182.000 −1.64998 −0.824992 0.565145i \(-0.808820\pi\)
−0.824992 + 0.565145i \(0.808820\pi\)
\(24\) 0 0
\(25\) −109.000 −0.872000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 90.0000 0.576296 0.288148 0.957586i \(-0.406961\pi\)
0.288148 + 0.957586i \(0.406961\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.0463498 −0.0231749 0.999731i \(-0.507377\pi\)
−0.0231749 + 0.999731i \(0.507377\pi\)
\(32\) 0 0
\(33\) −33.0000 −0.174078
\(34\) 0 0
\(35\) −104.000 −0.502263
\(36\) 0 0
\(37\) 66.0000 0.293252 0.146626 0.989192i \(-0.453159\pi\)
0.146626 + 0.989192i \(0.453159\pi\)
\(38\) 0 0
\(39\) 96.0000 0.394162
\(40\) 0 0
\(41\) 422.000 1.60745 0.803724 0.595003i \(-0.202849\pi\)
0.803724 + 0.595003i \(0.202849\pi\)
\(42\) 0 0
\(43\) −408.000 −1.44696 −0.723482 0.690344i \(-0.757459\pi\)
−0.723482 + 0.690344i \(0.757459\pi\)
\(44\) 0 0
\(45\) 36.0000 0.119257
\(46\) 0 0
\(47\) −506.000 −1.57038 −0.785188 0.619257i \(-0.787434\pi\)
−0.785188 + 0.619257i \(0.787434\pi\)
\(48\) 0 0
\(49\) 333.000 0.970845
\(50\) 0 0
\(51\) 222.000 0.609534
\(52\) 0 0
\(53\) −348.000 −0.901915 −0.450957 0.892546i \(-0.648917\pi\)
−0.450957 + 0.892546i \(0.648917\pi\)
\(54\) 0 0
\(55\) −44.0000 −0.107872
\(56\) 0 0
\(57\) 180.000 0.418273
\(58\) 0 0
\(59\) 200.000 0.441318 0.220659 0.975351i \(-0.429179\pi\)
0.220659 + 0.975351i \(0.429179\pi\)
\(60\) 0 0
\(61\) −132.000 −0.277063 −0.138532 0.990358i \(-0.544238\pi\)
−0.138532 + 0.990358i \(0.544238\pi\)
\(62\) 0 0
\(63\) −234.000 −0.467956
\(64\) 0 0
\(65\) 128.000 0.244253
\(66\) 0 0
\(67\) 1036.00 1.88907 0.944534 0.328414i \(-0.106514\pi\)
0.944534 + 0.328414i \(0.106514\pi\)
\(68\) 0 0
\(69\) −546.000 −0.952618
\(70\) 0 0
\(71\) 762.000 1.27370 0.636850 0.770987i \(-0.280237\pi\)
0.636850 + 0.770987i \(0.280237\pi\)
\(72\) 0 0
\(73\) −542.000 −0.868990 −0.434495 0.900674i \(-0.643073\pi\)
−0.434495 + 0.900674i \(0.643073\pi\)
\(74\) 0 0
\(75\) −327.000 −0.503449
\(76\) 0 0
\(77\) 286.000 0.423282
\(78\) 0 0
\(79\) −550.000 −0.783289 −0.391645 0.920117i \(-0.628094\pi\)
−0.391645 + 0.920117i \(0.628094\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 132.000 0.174565 0.0872824 0.996184i \(-0.472182\pi\)
0.0872824 + 0.996184i \(0.472182\pi\)
\(84\) 0 0
\(85\) 296.000 0.377714
\(86\) 0 0
\(87\) 270.000 0.332725
\(88\) 0 0
\(89\) 570.000 0.678875 0.339438 0.940629i \(-0.389763\pi\)
0.339438 + 0.940629i \(0.389763\pi\)
\(90\) 0 0
\(91\) −832.000 −0.958432
\(92\) 0 0
\(93\) −24.0000 −0.0267600
\(94\) 0 0
\(95\) 240.000 0.259195
\(96\) 0 0
\(97\) 14.0000 0.0146545 0.00732724 0.999973i \(-0.497668\pi\)
0.00732724 + 0.999973i \(0.497668\pi\)
\(98\) 0 0
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) −1702.00 −1.67679 −0.838393 0.545067i \(-0.816504\pi\)
−0.838393 + 0.545067i \(0.816504\pi\)
\(102\) 0 0
\(103\) −1132.00 −1.08291 −0.541453 0.840731i \(-0.682126\pi\)
−0.541453 + 0.840731i \(0.682126\pi\)
\(104\) 0 0
\(105\) −312.000 −0.289982
\(106\) 0 0
\(107\) −564.000 −0.509570 −0.254785 0.966998i \(-0.582005\pi\)
−0.254785 + 0.966998i \(0.582005\pi\)
\(108\) 0 0
\(109\) 320.000 0.281197 0.140598 0.990067i \(-0.455097\pi\)
0.140598 + 0.990067i \(0.455097\pi\)
\(110\) 0 0
\(111\) 198.000 0.169309
\(112\) 0 0
\(113\) −2142.00 −1.78321 −0.891604 0.452817i \(-0.850419\pi\)
−0.891604 + 0.452817i \(0.850419\pi\)
\(114\) 0 0
\(115\) −728.000 −0.590316
\(116\) 0 0
\(117\) 288.000 0.227569
\(118\) 0 0
\(119\) −1924.00 −1.48212
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 1266.00 0.928060
\(124\) 0 0
\(125\) −936.000 −0.669747
\(126\) 0 0
\(127\) −1606.00 −1.12212 −0.561061 0.827775i \(-0.689607\pi\)
−0.561061 + 0.827775i \(0.689607\pi\)
\(128\) 0 0
\(129\) −1224.00 −0.835405
\(130\) 0 0
\(131\) 1908.00 1.27254 0.636270 0.771466i \(-0.280476\pi\)
0.636270 + 0.771466i \(0.280476\pi\)
\(132\) 0 0
\(133\) −1560.00 −1.01706
\(134\) 0 0
\(135\) 108.000 0.0688530
\(136\) 0 0
\(137\) −2186.00 −1.36323 −0.681615 0.731711i \(-0.738722\pi\)
−0.681615 + 0.731711i \(0.738722\pi\)
\(138\) 0 0
\(139\) −2740.00 −1.67197 −0.835985 0.548753i \(-0.815103\pi\)
−0.835985 + 0.548753i \(0.815103\pi\)
\(140\) 0 0
\(141\) −1518.00 −0.906657
\(142\) 0 0
\(143\) −352.000 −0.205844
\(144\) 0 0
\(145\) 360.000 0.206182
\(146\) 0 0
\(147\) 999.000 0.560518
\(148\) 0 0
\(149\) 1310.00 0.720264 0.360132 0.932901i \(-0.382732\pi\)
0.360132 + 0.932901i \(0.382732\pi\)
\(150\) 0 0
\(151\) −1198.00 −0.645641 −0.322821 0.946460i \(-0.604631\pi\)
−0.322821 + 0.946460i \(0.604631\pi\)
\(152\) 0 0
\(153\) 666.000 0.351914
\(154\) 0 0
\(155\) −32.0000 −0.0165826
\(156\) 0 0
\(157\) −2114.00 −1.07462 −0.537311 0.843384i \(-0.680560\pi\)
−0.537311 + 0.843384i \(0.680560\pi\)
\(158\) 0 0
\(159\) −1044.00 −0.520721
\(160\) 0 0
\(161\) 4732.00 2.31636
\(162\) 0 0
\(163\) −3868.00 −1.85868 −0.929341 0.369223i \(-0.879624\pi\)
−0.929341 + 0.369223i \(0.879624\pi\)
\(164\) 0 0
\(165\) −132.000 −0.0622799
\(166\) 0 0
\(167\) 2004.00 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −1173.00 −0.533910
\(170\) 0 0
\(171\) 540.000 0.241490
\(172\) 0 0
\(173\) −678.000 −0.297962 −0.148981 0.988840i \(-0.547599\pi\)
−0.148981 + 0.988840i \(0.547599\pi\)
\(174\) 0 0
\(175\) 2834.00 1.22417
\(176\) 0 0
\(177\) 600.000 0.254795
\(178\) 0 0
\(179\) 1680.00 0.701503 0.350752 0.936469i \(-0.385926\pi\)
0.350752 + 0.936469i \(0.385926\pi\)
\(180\) 0 0
\(181\) 4358.00 1.78966 0.894828 0.446412i \(-0.147298\pi\)
0.894828 + 0.446412i \(0.147298\pi\)
\(182\) 0 0
\(183\) −396.000 −0.159963
\(184\) 0 0
\(185\) 264.000 0.104917
\(186\) 0 0
\(187\) −814.000 −0.318319
\(188\) 0 0
\(189\) −702.000 −0.270175
\(190\) 0 0
\(191\) −1778.00 −0.673568 −0.336784 0.941582i \(-0.609339\pi\)
−0.336784 + 0.941582i \(0.609339\pi\)
\(192\) 0 0
\(193\) −3962.00 −1.47767 −0.738837 0.673884i \(-0.764625\pi\)
−0.738837 + 0.673884i \(0.764625\pi\)
\(194\) 0 0
\(195\) 384.000 0.141020
\(196\) 0 0
\(197\) −374.000 −0.135261 −0.0676304 0.997710i \(-0.521544\pi\)
−0.0676304 + 0.997710i \(0.521544\pi\)
\(198\) 0 0
\(199\) 2100.00 0.748066 0.374033 0.927415i \(-0.377975\pi\)
0.374033 + 0.927415i \(0.377975\pi\)
\(200\) 0 0
\(201\) 3108.00 1.09065
\(202\) 0 0
\(203\) −2340.00 −0.809043
\(204\) 0 0
\(205\) 1688.00 0.575098
\(206\) 0 0
\(207\) −1638.00 −0.549995
\(208\) 0 0
\(209\) −660.000 −0.218436
\(210\) 0 0
\(211\) −2232.00 −0.728233 −0.364117 0.931353i \(-0.618629\pi\)
−0.364117 + 0.931353i \(0.618629\pi\)
\(212\) 0 0
\(213\) 2286.00 0.735372
\(214\) 0 0
\(215\) −1632.00 −0.517681
\(216\) 0 0
\(217\) 208.000 0.0650689
\(218\) 0 0
\(219\) −1626.00 −0.501712
\(220\) 0 0
\(221\) 2368.00 0.720764
\(222\) 0 0
\(223\) 2128.00 0.639020 0.319510 0.947583i \(-0.396482\pi\)
0.319510 + 0.947583i \(0.396482\pi\)
\(224\) 0 0
\(225\) −981.000 −0.290667
\(226\) 0 0
\(227\) −2964.00 −0.866641 −0.433321 0.901240i \(-0.642658\pi\)
−0.433321 + 0.901240i \(0.642658\pi\)
\(228\) 0 0
\(229\) 2550.00 0.735846 0.367923 0.929856i \(-0.380069\pi\)
0.367923 + 0.929856i \(0.380069\pi\)
\(230\) 0 0
\(231\) 858.000 0.244382
\(232\) 0 0
\(233\) −3042.00 −0.855314 −0.427657 0.903941i \(-0.640661\pi\)
−0.427657 + 0.903941i \(0.640661\pi\)
\(234\) 0 0
\(235\) −2024.00 −0.561835
\(236\) 0 0
\(237\) −1650.00 −0.452232
\(238\) 0 0
\(239\) 2700.00 0.730747 0.365373 0.930861i \(-0.380941\pi\)
0.365373 + 0.930861i \(0.380941\pi\)
\(240\) 0 0
\(241\) −578.000 −0.154491 −0.0772453 0.997012i \(-0.524612\pi\)
−0.0772453 + 0.997012i \(0.524612\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 1332.00 0.347340
\(246\) 0 0
\(247\) 1920.00 0.494602
\(248\) 0 0
\(249\) 396.000 0.100785
\(250\) 0 0
\(251\) −3752.00 −0.943522 −0.471761 0.881726i \(-0.656382\pi\)
−0.471761 + 0.881726i \(0.656382\pi\)
\(252\) 0 0
\(253\) 2002.00 0.497489
\(254\) 0 0
\(255\) 888.000 0.218073
\(256\) 0 0
\(257\) 674.000 0.163591 0.0817957 0.996649i \(-0.473935\pi\)
0.0817957 + 0.996649i \(0.473935\pi\)
\(258\) 0 0
\(259\) −1716.00 −0.411687
\(260\) 0 0
\(261\) 810.000 0.192099
\(262\) 0 0
\(263\) −4352.00 −1.02036 −0.510182 0.860066i \(-0.670422\pi\)
−0.510182 + 0.860066i \(0.670422\pi\)
\(264\) 0 0
\(265\) −1392.00 −0.322679
\(266\) 0 0
\(267\) 1710.00 0.391949
\(268\) 0 0
\(269\) −500.000 −0.113329 −0.0566646 0.998393i \(-0.518047\pi\)
−0.0566646 + 0.998393i \(0.518047\pi\)
\(270\) 0 0
\(271\) −6538.00 −1.46552 −0.732759 0.680489i \(-0.761768\pi\)
−0.732759 + 0.680489i \(0.761768\pi\)
\(272\) 0 0
\(273\) −2496.00 −0.553351
\(274\) 0 0
\(275\) 1199.00 0.262918
\(276\) 0 0
\(277\) −124.000 −0.0268969 −0.0134484 0.999910i \(-0.504281\pi\)
−0.0134484 + 0.999910i \(0.504281\pi\)
\(278\) 0 0
\(279\) −72.0000 −0.0154499
\(280\) 0 0
\(281\) 3642.00 0.773180 0.386590 0.922252i \(-0.373653\pi\)
0.386590 + 0.922252i \(0.373653\pi\)
\(282\) 0 0
\(283\) −4648.00 −0.976307 −0.488154 0.872758i \(-0.662329\pi\)
−0.488154 + 0.872758i \(0.662329\pi\)
\(284\) 0 0
\(285\) 720.000 0.149646
\(286\) 0 0
\(287\) −10972.0 −2.25664
\(288\) 0 0
\(289\) 563.000 0.114594
\(290\) 0 0
\(291\) 42.0000 0.00846077
\(292\) 0 0
\(293\) 3102.00 0.618501 0.309250 0.950981i \(-0.399922\pi\)
0.309250 + 0.950981i \(0.399922\pi\)
\(294\) 0 0
\(295\) 800.000 0.157891
\(296\) 0 0
\(297\) −297.000 −0.0580259
\(298\) 0 0
\(299\) −5824.00 −1.12646
\(300\) 0 0
\(301\) 10608.0 2.03135
\(302\) 0 0
\(303\) −5106.00 −0.968093
\(304\) 0 0
\(305\) −528.000 −0.0991252
\(306\) 0 0
\(307\) −1244.00 −0.231267 −0.115633 0.993292i \(-0.536890\pi\)
−0.115633 + 0.993292i \(0.536890\pi\)
\(308\) 0 0
\(309\) −3396.00 −0.625216
\(310\) 0 0
\(311\) 2082.00 0.379612 0.189806 0.981822i \(-0.439214\pi\)
0.189806 + 0.981822i \(0.439214\pi\)
\(312\) 0 0
\(313\) 2378.00 0.429433 0.214716 0.976676i \(-0.431117\pi\)
0.214716 + 0.976676i \(0.431117\pi\)
\(314\) 0 0
\(315\) −936.000 −0.167421
\(316\) 0 0
\(317\) 496.000 0.0878806 0.0439403 0.999034i \(-0.486009\pi\)
0.0439403 + 0.999034i \(0.486009\pi\)
\(318\) 0 0
\(319\) −990.000 −0.173760
\(320\) 0 0
\(321\) −1692.00 −0.294200
\(322\) 0 0
\(323\) 4440.00 0.764855
\(324\) 0 0
\(325\) −3488.00 −0.595321
\(326\) 0 0
\(327\) 960.000 0.162349
\(328\) 0 0
\(329\) 13156.0 2.20460
\(330\) 0 0
\(331\) 2708.00 0.449683 0.224842 0.974395i \(-0.427814\pi\)
0.224842 + 0.974395i \(0.427814\pi\)
\(332\) 0 0
\(333\) 594.000 0.0977507
\(334\) 0 0
\(335\) 4144.00 0.675853
\(336\) 0 0
\(337\) 4034.00 0.652065 0.326033 0.945359i \(-0.394288\pi\)
0.326033 + 0.945359i \(0.394288\pi\)
\(338\) 0 0
\(339\) −6426.00 −1.02954
\(340\) 0 0
\(341\) 88.0000 0.0139750
\(342\) 0 0
\(343\) 260.000 0.0409291
\(344\) 0 0
\(345\) −2184.00 −0.340819
\(346\) 0 0
\(347\) −11084.0 −1.71476 −0.857378 0.514687i \(-0.827908\pi\)
−0.857378 + 0.514687i \(0.827908\pi\)
\(348\) 0 0
\(349\) 3120.00 0.478538 0.239269 0.970953i \(-0.423092\pi\)
0.239269 + 0.970953i \(0.423092\pi\)
\(350\) 0 0
\(351\) 864.000 0.131387
\(352\) 0 0
\(353\) −5622.00 −0.847674 −0.423837 0.905739i \(-0.639317\pi\)
−0.423837 + 0.905739i \(0.639317\pi\)
\(354\) 0 0
\(355\) 3048.00 0.455693
\(356\) 0 0
\(357\) −5772.00 −0.855705
\(358\) 0 0
\(359\) −8500.00 −1.24962 −0.624809 0.780778i \(-0.714823\pi\)
−0.624809 + 0.780778i \(0.714823\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) 0 0
\(363\) 363.000 0.0524864
\(364\) 0 0
\(365\) −2168.00 −0.310899
\(366\) 0 0
\(367\) 7144.00 1.01611 0.508057 0.861324i \(-0.330364\pi\)
0.508057 + 0.861324i \(0.330364\pi\)
\(368\) 0 0
\(369\) 3798.00 0.535816
\(370\) 0 0
\(371\) 9048.00 1.26617
\(372\) 0 0
\(373\) 632.000 0.0877312 0.0438656 0.999037i \(-0.486033\pi\)
0.0438656 + 0.999037i \(0.486033\pi\)
\(374\) 0 0
\(375\) −2808.00 −0.386679
\(376\) 0 0
\(377\) 2880.00 0.393442
\(378\) 0 0
\(379\) 4220.00 0.571944 0.285972 0.958238i \(-0.407684\pi\)
0.285972 + 0.958238i \(0.407684\pi\)
\(380\) 0 0
\(381\) −4818.00 −0.647857
\(382\) 0 0
\(383\) 8458.00 1.12842 0.564208 0.825632i \(-0.309181\pi\)
0.564208 + 0.825632i \(0.309181\pi\)
\(384\) 0 0
\(385\) 1144.00 0.151438
\(386\) 0 0
\(387\) −3672.00 −0.482321
\(388\) 0 0
\(389\) −1740.00 −0.226790 −0.113395 0.993550i \(-0.536173\pi\)
−0.113395 + 0.993550i \(0.536173\pi\)
\(390\) 0 0
\(391\) −13468.0 −1.74196
\(392\) 0 0
\(393\) 5724.00 0.734701
\(394\) 0 0
\(395\) −2200.00 −0.280238
\(396\) 0 0
\(397\) 5126.00 0.648027 0.324013 0.946053i \(-0.394968\pi\)
0.324013 + 0.946053i \(0.394968\pi\)
\(398\) 0 0
\(399\) −4680.00 −0.587201
\(400\) 0 0
\(401\) −3098.00 −0.385802 −0.192901 0.981218i \(-0.561790\pi\)
−0.192901 + 0.981218i \(0.561790\pi\)
\(402\) 0 0
\(403\) −256.000 −0.0316433
\(404\) 0 0
\(405\) 324.000 0.0397523
\(406\) 0 0
\(407\) −726.000 −0.0884189
\(408\) 0 0
\(409\) 6390.00 0.772531 0.386265 0.922388i \(-0.373765\pi\)
0.386265 + 0.922388i \(0.373765\pi\)
\(410\) 0 0
\(411\) −6558.00 −0.787062
\(412\) 0 0
\(413\) −5200.00 −0.619553
\(414\) 0 0
\(415\) 528.000 0.0624542
\(416\) 0 0
\(417\) −8220.00 −0.965312
\(418\) 0 0
\(419\) −9760.00 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(420\) 0 0
\(421\) 5138.00 0.594800 0.297400 0.954753i \(-0.403881\pi\)
0.297400 + 0.954753i \(0.403881\pi\)
\(422\) 0 0
\(423\) −4554.00 −0.523459
\(424\) 0 0
\(425\) −8066.00 −0.920608
\(426\) 0 0
\(427\) 3432.00 0.388960
\(428\) 0 0
\(429\) −1056.00 −0.118844
\(430\) 0 0
\(431\) −7008.00 −0.783210 −0.391605 0.920133i \(-0.628080\pi\)
−0.391605 + 0.920133i \(0.628080\pi\)
\(432\) 0 0
\(433\) 5578.00 0.619080 0.309540 0.950886i \(-0.399825\pi\)
0.309540 + 0.950886i \(0.399825\pi\)
\(434\) 0 0
\(435\) 1080.00 0.119039
\(436\) 0 0
\(437\) −10920.0 −1.19536
\(438\) 0 0
\(439\) −10430.0 −1.13393 −0.566967 0.823741i \(-0.691883\pi\)
−0.566967 + 0.823741i \(0.691883\pi\)
\(440\) 0 0
\(441\) 2997.00 0.323615
\(442\) 0 0
\(443\) 4432.00 0.475329 0.237664 0.971347i \(-0.423618\pi\)
0.237664 + 0.971347i \(0.423618\pi\)
\(444\) 0 0
\(445\) 2280.00 0.242882
\(446\) 0 0
\(447\) 3930.00 0.415845
\(448\) 0 0
\(449\) −6290.00 −0.661121 −0.330561 0.943785i \(-0.607238\pi\)
−0.330561 + 0.943785i \(0.607238\pi\)
\(450\) 0 0
\(451\) −4642.00 −0.484664
\(452\) 0 0
\(453\) −3594.00 −0.372761
\(454\) 0 0
\(455\) −3328.00 −0.342899
\(456\) 0 0
\(457\) 3054.00 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(458\) 0 0
\(459\) 1998.00 0.203178
\(460\) 0 0
\(461\) −12882.0 −1.30146 −0.650732 0.759308i \(-0.725538\pi\)
−0.650732 + 0.759308i \(0.725538\pi\)
\(462\) 0 0
\(463\) 6148.00 0.617110 0.308555 0.951207i \(-0.400155\pi\)
0.308555 + 0.951207i \(0.400155\pi\)
\(464\) 0 0
\(465\) −96.0000 −0.00957396
\(466\) 0 0
\(467\) −5124.00 −0.507731 −0.253866 0.967240i \(-0.581702\pi\)
−0.253866 + 0.967240i \(0.581702\pi\)
\(468\) 0 0
\(469\) −26936.0 −2.65200
\(470\) 0 0
\(471\) −6342.00 −0.620433
\(472\) 0 0
\(473\) 4488.00 0.436276
\(474\) 0 0
\(475\) −6540.00 −0.631738
\(476\) 0 0
\(477\) −3132.00 −0.300638
\(478\) 0 0
\(479\) −16520.0 −1.57582 −0.787910 0.615790i \(-0.788837\pi\)
−0.787910 + 0.615790i \(0.788837\pi\)
\(480\) 0 0
\(481\) 2112.00 0.200206
\(482\) 0 0
\(483\) 14196.0 1.33735
\(484\) 0 0
\(485\) 56.0000 0.00524295
\(486\) 0 0
\(487\) 524.000 0.0487571 0.0243785 0.999703i \(-0.492239\pi\)
0.0243785 + 0.999703i \(0.492239\pi\)
\(488\) 0 0
\(489\) −11604.0 −1.07311
\(490\) 0 0
\(491\) 15028.0 1.38127 0.690636 0.723203i \(-0.257331\pi\)
0.690636 + 0.723203i \(0.257331\pi\)
\(492\) 0 0
\(493\) 6660.00 0.608421
\(494\) 0 0
\(495\) −396.000 −0.0359573
\(496\) 0 0
\(497\) −19812.0 −1.78811
\(498\) 0 0
\(499\) −9020.00 −0.809200 −0.404600 0.914494i \(-0.632589\pi\)
−0.404600 + 0.914494i \(0.632589\pi\)
\(500\) 0 0
\(501\) 6012.00 0.536120
\(502\) 0 0
\(503\) −14812.0 −1.31299 −0.656495 0.754330i \(-0.727962\pi\)
−0.656495 + 0.754330i \(0.727962\pi\)
\(504\) 0 0
\(505\) −6808.00 −0.599905
\(506\) 0 0
\(507\) −3519.00 −0.308253
\(508\) 0 0
\(509\) −12660.0 −1.10245 −0.551223 0.834358i \(-0.685839\pi\)
−0.551223 + 0.834358i \(0.685839\pi\)
\(510\) 0 0
\(511\) 14092.0 1.21995
\(512\) 0 0
\(513\) 1620.00 0.139424
\(514\) 0 0
\(515\) −4528.00 −0.387432
\(516\) 0 0
\(517\) 5566.00 0.473486
\(518\) 0 0
\(519\) −2034.00 −0.172028
\(520\) 0 0
\(521\) −3738.00 −0.314328 −0.157164 0.987573i \(-0.550235\pi\)
−0.157164 + 0.987573i \(0.550235\pi\)
\(522\) 0 0
\(523\) 6352.00 0.531078 0.265539 0.964100i \(-0.414450\pi\)
0.265539 + 0.964100i \(0.414450\pi\)
\(524\) 0 0
\(525\) 8502.00 0.706777
\(526\) 0 0
\(527\) −592.000 −0.0489334
\(528\) 0 0
\(529\) 20957.0 1.72245
\(530\) 0 0
\(531\) 1800.00 0.147106
\(532\) 0 0
\(533\) 13504.0 1.09742
\(534\) 0 0
\(535\) −2256.00 −0.182309
\(536\) 0 0
\(537\) 5040.00 0.405013
\(538\) 0 0
\(539\) −3663.00 −0.292721
\(540\) 0 0
\(541\) 24728.0 1.96514 0.982569 0.185898i \(-0.0595193\pi\)
0.982569 + 0.185898i \(0.0595193\pi\)
\(542\) 0 0
\(543\) 13074.0 1.03326
\(544\) 0 0
\(545\) 1280.00 0.100604
\(546\) 0 0
\(547\) 22756.0 1.77875 0.889375 0.457178i \(-0.151140\pi\)
0.889375 + 0.457178i \(0.151140\pi\)
\(548\) 0 0
\(549\) −1188.00 −0.0923545
\(550\) 0 0
\(551\) 5400.00 0.417509
\(552\) 0 0
\(553\) 14300.0 1.09963
\(554\) 0 0
\(555\) 792.000 0.0605739
\(556\) 0 0
\(557\) 9526.00 0.724649 0.362325 0.932052i \(-0.381983\pi\)
0.362325 + 0.932052i \(0.381983\pi\)
\(558\) 0 0
\(559\) −13056.0 −0.987853
\(560\) 0 0
\(561\) −2442.00 −0.183781
\(562\) 0 0
\(563\) −12068.0 −0.903385 −0.451692 0.892174i \(-0.649180\pi\)
−0.451692 + 0.892174i \(0.649180\pi\)
\(564\) 0 0
\(565\) −8568.00 −0.637980
\(566\) 0 0
\(567\) −2106.00 −0.155985
\(568\) 0 0
\(569\) 15090.0 1.11179 0.555893 0.831254i \(-0.312377\pi\)
0.555893 + 0.831254i \(0.312377\pi\)
\(570\) 0 0
\(571\) −4412.00 −0.323356 −0.161678 0.986844i \(-0.551691\pi\)
−0.161678 + 0.986844i \(0.551691\pi\)
\(572\) 0 0
\(573\) −5334.00 −0.388885
\(574\) 0 0
\(575\) 19838.0 1.43879
\(576\) 0 0
\(577\) −3906.00 −0.281818 −0.140909 0.990023i \(-0.545002\pi\)
−0.140909 + 0.990023i \(0.545002\pi\)
\(578\) 0 0
\(579\) −11886.0 −0.853135
\(580\) 0 0
\(581\) −3432.00 −0.245066
\(582\) 0 0
\(583\) 3828.00 0.271937
\(584\) 0 0
\(585\) 1152.00 0.0814177
\(586\) 0 0
\(587\) 12016.0 0.844895 0.422448 0.906387i \(-0.361171\pi\)
0.422448 + 0.906387i \(0.361171\pi\)
\(588\) 0 0
\(589\) −480.000 −0.0335790
\(590\) 0 0
\(591\) −1122.00 −0.0780929
\(592\) 0 0
\(593\) −11342.0 −0.785430 −0.392715 0.919660i \(-0.628464\pi\)
−0.392715 + 0.919660i \(0.628464\pi\)
\(594\) 0 0
\(595\) −7696.00 −0.530261
\(596\) 0 0
\(597\) 6300.00 0.431896
\(598\) 0 0
\(599\) 20690.0 1.41130 0.705651 0.708559i \(-0.250654\pi\)
0.705651 + 0.708559i \(0.250654\pi\)
\(600\) 0 0
\(601\) −598.000 −0.0405872 −0.0202936 0.999794i \(-0.506460\pi\)
−0.0202936 + 0.999794i \(0.506460\pi\)
\(602\) 0 0
\(603\) 9324.00 0.629689
\(604\) 0 0
\(605\) 484.000 0.0325246
\(606\) 0 0
\(607\) −166.000 −0.0111001 −0.00555003 0.999985i \(-0.501767\pi\)
−0.00555003 + 0.999985i \(0.501767\pi\)
\(608\) 0 0
\(609\) −7020.00 −0.467101
\(610\) 0 0
\(611\) −16192.0 −1.07211
\(612\) 0 0
\(613\) −20108.0 −1.32488 −0.662442 0.749113i \(-0.730480\pi\)
−0.662442 + 0.749113i \(0.730480\pi\)
\(614\) 0 0
\(615\) 5064.00 0.332033
\(616\) 0 0
\(617\) −2286.00 −0.149159 −0.0745793 0.997215i \(-0.523761\pi\)
−0.0745793 + 0.997215i \(0.523761\pi\)
\(618\) 0 0
\(619\) 25660.0 1.66618 0.833088 0.553141i \(-0.186571\pi\)
0.833088 + 0.553141i \(0.186571\pi\)
\(620\) 0 0
\(621\) −4914.00 −0.317539
\(622\) 0 0
\(623\) −14820.0 −0.953051
\(624\) 0 0
\(625\) 9881.00 0.632384
\(626\) 0 0
\(627\) −1980.00 −0.126114
\(628\) 0 0
\(629\) 4884.00 0.309599
\(630\) 0 0
\(631\) −11408.0 −0.719723 −0.359862 0.933006i \(-0.617176\pi\)
−0.359862 + 0.933006i \(0.617176\pi\)
\(632\) 0 0
\(633\) −6696.00 −0.420446
\(634\) 0 0
\(635\) −6424.00 −0.401462
\(636\) 0 0
\(637\) 10656.0 0.662804
\(638\) 0 0
\(639\) 6858.00 0.424567
\(640\) 0 0
\(641\) −3378.00 −0.208148 −0.104074 0.994570i \(-0.533188\pi\)
−0.104074 + 0.994570i \(0.533188\pi\)
\(642\) 0 0
\(643\) 11212.0 0.687649 0.343824 0.939034i \(-0.388278\pi\)
0.343824 + 0.939034i \(0.388278\pi\)
\(644\) 0 0
\(645\) −4896.00 −0.298883
\(646\) 0 0
\(647\) −86.0000 −0.00522567 −0.00261284 0.999997i \(-0.500832\pi\)
−0.00261284 + 0.999997i \(0.500832\pi\)
\(648\) 0 0
\(649\) −2200.00 −0.133062
\(650\) 0 0
\(651\) 624.000 0.0375676
\(652\) 0 0
\(653\) 4432.00 0.265601 0.132801 0.991143i \(-0.457603\pi\)
0.132801 + 0.991143i \(0.457603\pi\)
\(654\) 0 0
\(655\) 7632.00 0.455278
\(656\) 0 0
\(657\) −4878.00 −0.289663
\(658\) 0 0
\(659\) −4580.00 −0.270731 −0.135365 0.990796i \(-0.543221\pi\)
−0.135365 + 0.990796i \(0.543221\pi\)
\(660\) 0 0
\(661\) −4282.00 −0.251967 −0.125984 0.992032i \(-0.540209\pi\)
−0.125984 + 0.992032i \(0.540209\pi\)
\(662\) 0 0
\(663\) 7104.00 0.416133
\(664\) 0 0
\(665\) −6240.00 −0.363875
\(666\) 0 0
\(667\) −16380.0 −0.950879
\(668\) 0 0
\(669\) 6384.00 0.368938
\(670\) 0 0
\(671\) 1452.00 0.0835378
\(672\) 0 0
\(673\) 8438.00 0.483300 0.241650 0.970363i \(-0.422311\pi\)
0.241650 + 0.970363i \(0.422311\pi\)
\(674\) 0 0
\(675\) −2943.00 −0.167816
\(676\) 0 0
\(677\) −34494.0 −1.95822 −0.979108 0.203341i \(-0.934820\pi\)
−0.979108 + 0.203341i \(0.934820\pi\)
\(678\) 0 0
\(679\) −364.000 −0.0205730
\(680\) 0 0
\(681\) −8892.00 −0.500356
\(682\) 0 0
\(683\) 13712.0 0.768192 0.384096 0.923293i \(-0.374513\pi\)
0.384096 + 0.923293i \(0.374513\pi\)
\(684\) 0 0
\(685\) −8744.00 −0.487724
\(686\) 0 0
\(687\) 7650.00 0.424841
\(688\) 0 0
\(689\) −11136.0 −0.615744
\(690\) 0 0
\(691\) −11372.0 −0.626066 −0.313033 0.949742i \(-0.601345\pi\)
−0.313033 + 0.949742i \(0.601345\pi\)
\(692\) 0 0
\(693\) 2574.00 0.141094
\(694\) 0 0
\(695\) −10960.0 −0.598182
\(696\) 0 0
\(697\) 31228.0 1.69705
\(698\) 0 0
\(699\) −9126.00 −0.493815
\(700\) 0 0
\(701\) 6398.00 0.344721 0.172360 0.985034i \(-0.444861\pi\)
0.172360 + 0.985034i \(0.444861\pi\)
\(702\) 0 0
\(703\) 3960.00 0.212453
\(704\) 0 0
\(705\) −6072.00 −0.324376
\(706\) 0 0
\(707\) 44252.0 2.35399
\(708\) 0 0
\(709\) 5830.00 0.308816 0.154408 0.988007i \(-0.450653\pi\)
0.154408 + 0.988007i \(0.450653\pi\)
\(710\) 0 0
\(711\) −4950.00 −0.261096
\(712\) 0 0
\(713\) 1456.00 0.0764763
\(714\) 0 0
\(715\) −1408.00 −0.0736451
\(716\) 0 0
\(717\) 8100.00 0.421897
\(718\) 0 0
\(719\) 34530.0 1.79103 0.895516 0.445030i \(-0.146807\pi\)
0.895516 + 0.445030i \(0.146807\pi\)
\(720\) 0 0
\(721\) 29432.0 1.52026
\(722\) 0 0
\(723\) −1734.00 −0.0891952
\(724\) 0 0
\(725\) −9810.00 −0.502530
\(726\) 0 0
\(727\) −17316.0 −0.883377 −0.441688 0.897169i \(-0.645620\pi\)
−0.441688 + 0.897169i \(0.645620\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −30192.0 −1.52762
\(732\) 0 0
\(733\) 27072.0 1.36416 0.682079 0.731279i \(-0.261076\pi\)
0.682079 + 0.731279i \(0.261076\pi\)
\(734\) 0 0
\(735\) 3996.00 0.200537
\(736\) 0 0
\(737\) −11396.0 −0.569575
\(738\) 0 0
\(739\) 17320.0 0.862147 0.431073 0.902317i \(-0.358135\pi\)
0.431073 + 0.902317i \(0.358135\pi\)
\(740\) 0 0
\(741\) 5760.00 0.285559
\(742\) 0 0
\(743\) 14588.0 0.720299 0.360149 0.932895i \(-0.382726\pi\)
0.360149 + 0.932895i \(0.382726\pi\)
\(744\) 0 0
\(745\) 5240.00 0.257690
\(746\) 0 0
\(747\) 1188.00 0.0581883
\(748\) 0 0
\(749\) 14664.0 0.715368
\(750\) 0 0
\(751\) 26152.0 1.27071 0.635353 0.772222i \(-0.280855\pi\)
0.635353 + 0.772222i \(0.280855\pi\)
\(752\) 0 0
\(753\) −11256.0 −0.544743
\(754\) 0 0
\(755\) −4792.00 −0.230992
\(756\) 0 0
\(757\) 1066.00 0.0511815 0.0255908 0.999673i \(-0.491853\pi\)
0.0255908 + 0.999673i \(0.491853\pi\)
\(758\) 0 0
\(759\) 6006.00 0.287225
\(760\) 0 0
\(761\) −37518.0 −1.78716 −0.893578 0.448907i \(-0.851813\pi\)
−0.893578 + 0.448907i \(0.851813\pi\)
\(762\) 0 0
\(763\) −8320.00 −0.394763
\(764\) 0 0
\(765\) 2664.00 0.125905
\(766\) 0 0
\(767\) 6400.00 0.301292
\(768\) 0 0
\(769\) −17290.0 −0.810785 −0.405392 0.914143i \(-0.632865\pi\)
−0.405392 + 0.914143i \(0.632865\pi\)
\(770\) 0 0
\(771\) 2022.00 0.0944495
\(772\) 0 0
\(773\) 17172.0 0.799009 0.399504 0.916731i \(-0.369182\pi\)
0.399504 + 0.916731i \(0.369182\pi\)
\(774\) 0 0
\(775\) 872.000 0.0404170
\(776\) 0 0
\(777\) −5148.00 −0.237688
\(778\) 0 0
\(779\) 25320.0 1.16455
\(780\) 0 0
\(781\) −8382.00 −0.384035
\(782\) 0 0
\(783\) 2430.00 0.110908
\(784\) 0 0
\(785\) −8456.00 −0.384468
\(786\) 0 0
\(787\) 9536.00 0.431921 0.215960 0.976402i \(-0.430712\pi\)
0.215960 + 0.976402i \(0.430712\pi\)
\(788\) 0 0
\(789\) −13056.0 −0.589108
\(790\) 0 0
\(791\) 55692.0 2.50339
\(792\) 0 0
\(793\) −4224.00 −0.189153
\(794\) 0 0
\(795\) −4176.00 −0.186299
\(796\) 0 0
\(797\) 20516.0 0.911812 0.455906 0.890028i \(-0.349315\pi\)
0.455906 + 0.890028i \(0.349315\pi\)
\(798\) 0 0
\(799\) −37444.0 −1.65791
\(800\) 0 0
\(801\) 5130.00 0.226292
\(802\) 0 0
\(803\) 5962.00 0.262010
\(804\) 0 0
\(805\) 18928.0 0.828726
\(806\) 0 0
\(807\) −1500.00 −0.0654306
\(808\) 0 0
\(809\) 22470.0 0.976518 0.488259 0.872699i \(-0.337632\pi\)
0.488259 + 0.872699i \(0.337632\pi\)
\(810\) 0 0
\(811\) 3368.00 0.145828 0.0729140 0.997338i \(-0.476770\pi\)
0.0729140 + 0.997338i \(0.476770\pi\)
\(812\) 0 0
\(813\) −19614.0 −0.846117
\(814\) 0 0
\(815\) −15472.0 −0.664982
\(816\) 0 0
\(817\) −24480.0 −1.04828
\(818\) 0 0
\(819\) −7488.00 −0.319477
\(820\) 0 0
\(821\) 10738.0 0.456466 0.228233 0.973607i \(-0.426705\pi\)
0.228233 + 0.973607i \(0.426705\pi\)
\(822\) 0 0
\(823\) −15912.0 −0.673946 −0.336973 0.941514i \(-0.609403\pi\)
−0.336973 + 0.941514i \(0.609403\pi\)
\(824\) 0 0
\(825\) 3597.00 0.151796
\(826\) 0 0
\(827\) −22924.0 −0.963900 −0.481950 0.876199i \(-0.660071\pi\)
−0.481950 + 0.876199i \(0.660071\pi\)
\(828\) 0 0
\(829\) 41690.0 1.74663 0.873313 0.487159i \(-0.161967\pi\)
0.873313 + 0.487159i \(0.161967\pi\)
\(830\) 0 0
\(831\) −372.000 −0.0155289
\(832\) 0 0
\(833\) 24642.0 1.02496
\(834\) 0 0
\(835\) 8016.00 0.332222
\(836\) 0 0
\(837\) −216.000 −0.00892001
\(838\) 0 0
\(839\) −16450.0 −0.676898 −0.338449 0.940985i \(-0.609902\pi\)
−0.338449 + 0.940985i \(0.609902\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) 0 0
\(843\) 10926.0 0.446396
\(844\) 0 0
\(845\) −4692.00 −0.191017
\(846\) 0 0
\(847\) −3146.00 −0.127624
\(848\) 0 0
\(849\) −13944.0 −0.563671
\(850\) 0 0
\(851\) −12012.0 −0.483861
\(852\) 0 0
\(853\) 30892.0 1.24000 0.620001 0.784601i \(-0.287132\pi\)
0.620001 + 0.784601i \(0.287132\pi\)
\(854\) 0 0
\(855\) 2160.00 0.0863982
\(856\) 0 0
\(857\) −38906.0 −1.55076 −0.775381 0.631493i \(-0.782442\pi\)
−0.775381 + 0.631493i \(0.782442\pi\)
\(858\) 0 0
\(859\) 1020.00 0.0405145 0.0202572 0.999795i \(-0.493551\pi\)
0.0202572 + 0.999795i \(0.493551\pi\)
\(860\) 0 0
\(861\) −32916.0 −1.30287
\(862\) 0 0
\(863\) 15078.0 0.594741 0.297370 0.954762i \(-0.403890\pi\)
0.297370 + 0.954762i \(0.403890\pi\)
\(864\) 0 0
\(865\) −2712.00 −0.106602
\(866\) 0 0
\(867\) 1689.00 0.0661608
\(868\) 0 0
\(869\) 6050.00 0.236171
\(870\) 0 0
\(871\) 33152.0 1.28968
\(872\) 0 0
\(873\) 126.000 0.00488483
\(874\) 0 0
\(875\) 24336.0 0.940237
\(876\) 0 0
\(877\) −22704.0 −0.874184 −0.437092 0.899417i \(-0.643992\pi\)
−0.437092 + 0.899417i \(0.643992\pi\)
\(878\) 0 0
\(879\) 9306.00 0.357092
\(880\) 0 0
\(881\) −19358.0 −0.740281 −0.370141 0.928976i \(-0.620690\pi\)
−0.370141 + 0.928976i \(0.620690\pi\)
\(882\) 0 0
\(883\) 11252.0 0.428833 0.214417 0.976742i \(-0.431215\pi\)
0.214417 + 0.976742i \(0.431215\pi\)
\(884\) 0 0
\(885\) 2400.00 0.0911583
\(886\) 0 0
\(887\) 43684.0 1.65362 0.826812 0.562478i \(-0.190152\pi\)
0.826812 + 0.562478i \(0.190152\pi\)
\(888\) 0 0
\(889\) 41756.0 1.57531
\(890\) 0 0
\(891\) −891.000 −0.0335013
\(892\) 0 0
\(893\) −30360.0 −1.13769
\(894\) 0 0
\(895\) 6720.00 0.250977
\(896\) 0 0
\(897\) −17472.0 −0.650360
\(898\) 0 0
\(899\) −720.000 −0.0267112
\(900\) 0 0
\(901\) −25752.0 −0.952190
\(902\) 0 0
\(903\) 31824.0 1.17280
\(904\) 0 0
\(905\) 17432.0 0.640287
\(906\) 0 0
\(907\) −45804.0 −1.67684 −0.838422 0.545022i \(-0.816521\pi\)
−0.838422 + 0.545022i \(0.816521\pi\)
\(908\) 0 0
\(909\) −15318.0 −0.558928
\(910\) 0 0
\(911\) −15318.0 −0.557089 −0.278544 0.960423i \(-0.589852\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(912\) 0 0
\(913\) −1452.00 −0.0526333
\(914\) 0 0
\(915\) −1584.00 −0.0572300
\(916\) 0 0
\(917\) −49608.0 −1.78648
\(918\) 0 0
\(919\) 11350.0 0.407401 0.203701 0.979033i \(-0.434703\pi\)
0.203701 + 0.979033i \(0.434703\pi\)
\(920\) 0 0
\(921\) −3732.00 −0.133522
\(922\) 0 0
\(923\) 24384.0 0.869566
\(924\) 0 0
\(925\) −7194.00 −0.255716
\(926\) 0 0
\(927\) −10188.0 −0.360969
\(928\) 0 0
\(929\) 33030.0 1.16650 0.583250 0.812292i \(-0.301781\pi\)
0.583250 + 0.812292i \(0.301781\pi\)
\(930\) 0 0
\(931\) 19980.0 0.703349
\(932\) 0 0
\(933\) 6246.00 0.219169
\(934\) 0 0
\(935\) −3256.00 −0.113885
\(936\) 0 0
\(937\) −10006.0 −0.348860 −0.174430 0.984670i \(-0.555808\pi\)
−0.174430 + 0.984670i \(0.555808\pi\)
\(938\) 0 0
\(939\) 7134.00 0.247933
\(940\) 0 0
\(941\) −2622.00 −0.0908340 −0.0454170 0.998968i \(-0.514462\pi\)
−0.0454170 + 0.998968i \(0.514462\pi\)
\(942\) 0 0
\(943\) −76804.0 −2.65226
\(944\) 0 0
\(945\) −2808.00 −0.0966606
\(946\) 0 0
\(947\) 39876.0 1.36832 0.684158 0.729334i \(-0.260170\pi\)
0.684158 + 0.729334i \(0.260170\pi\)
\(948\) 0 0
\(949\) −17344.0 −0.593267
\(950\) 0 0
\(951\) 1488.00 0.0507379
\(952\) 0 0
\(953\) 38918.0 1.32285 0.661426 0.750011i \(-0.269952\pi\)
0.661426 + 0.750011i \(0.269952\pi\)
\(954\) 0 0
\(955\) −7112.00 −0.240983
\(956\) 0 0
\(957\) −2970.00 −0.100320
\(958\) 0 0
\(959\) 56836.0 1.91380
\(960\) 0 0
\(961\) −29727.0 −0.997852
\(962\) 0 0
\(963\) −5076.00 −0.169857
\(964\) 0 0
\(965\) −15848.0 −0.528669
\(966\) 0 0
\(967\) 1114.00 0.0370464 0.0185232 0.999828i \(-0.494104\pi\)
0.0185232 + 0.999828i \(0.494104\pi\)
\(968\) 0 0
\(969\) 13320.0 0.441589
\(970\) 0 0
\(971\) 1688.00 0.0557884 0.0278942 0.999611i \(-0.491120\pi\)
0.0278942 + 0.999611i \(0.491120\pi\)
\(972\) 0 0
\(973\) 71240.0 2.34722
\(974\) 0 0
\(975\) −10464.0 −0.343709
\(976\) 0 0
\(977\) −41826.0 −1.36963 −0.684817 0.728715i \(-0.740118\pi\)
−0.684817 + 0.728715i \(0.740118\pi\)
\(978\) 0 0
\(979\) −6270.00 −0.204689
\(980\) 0 0
\(981\) 2880.00 0.0937322
\(982\) 0 0
\(983\) 978.000 0.0317328 0.0158664 0.999874i \(-0.494949\pi\)
0.0158664 + 0.999874i \(0.494949\pi\)
\(984\) 0 0
\(985\) −1496.00 −0.0483924
\(986\) 0 0
\(987\) 39468.0 1.27283
\(988\) 0 0
\(989\) 74256.0 2.38747
\(990\) 0 0
\(991\) 47272.0 1.51528 0.757641 0.652671i \(-0.226352\pi\)
0.757641 + 0.652671i \(0.226352\pi\)
\(992\) 0 0
\(993\) 8124.00 0.259625
\(994\) 0 0
\(995\) 8400.00 0.267636
\(996\) 0 0
\(997\) −51104.0 −1.62335 −0.811675 0.584109i \(-0.801444\pi\)
−0.811675 + 0.584109i \(0.801444\pi\)
\(998\) 0 0
\(999\) 1782.00 0.0564364
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.4.a.u.1.1 1
4.3 odd 2 2112.4.a.h.1.1 1
8.3 odd 2 528.4.a.h.1.1 1
8.5 even 2 33.4.a.b.1.1 1
24.5 odd 2 99.4.a.a.1.1 1
24.11 even 2 1584.4.a.l.1.1 1
40.13 odd 4 825.4.c.f.199.2 2
40.29 even 2 825.4.a.f.1.1 1
40.37 odd 4 825.4.c.f.199.1 2
56.13 odd 2 1617.4.a.d.1.1 1
88.21 odd 2 363.4.a.d.1.1 1
120.29 odd 2 2475.4.a.e.1.1 1
264.197 even 2 1089.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.a.b.1.1 1 8.5 even 2
99.4.a.a.1.1 1 24.5 odd 2
363.4.a.d.1.1 1 88.21 odd 2
528.4.a.h.1.1 1 8.3 odd 2
825.4.a.f.1.1 1 40.29 even 2
825.4.c.f.199.1 2 40.37 odd 4
825.4.c.f.199.2 2 40.13 odd 4
1089.4.a.e.1.1 1 264.197 even 2
1584.4.a.l.1.1 1 24.11 even 2
1617.4.a.d.1.1 1 56.13 odd 2
2112.4.a.h.1.1 1 4.3 odd 2
2112.4.a.u.1.1 1 1.1 even 1 trivial
2475.4.a.e.1.1 1 120.29 odd 2