Properties

Label 2112.4.a.bd
Level $2112$
Weight $4$
Character orbit 2112.a
Self dual yes
Analytic conductor $124.612$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2112,4,Mod(1,2112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2112.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(124.612033932\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{137}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 264)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{137}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (\beta + 3) q^{5} + ( - 2 \beta - 8) q^{7} + 9 q^{9} - 11 q^{11} + ( - \beta - 11) q^{13} + ( - 3 \beta - 9) q^{15} + ( - 3 \beta - 11) q^{17} + (3 \beta - 31) q^{19} + (6 \beta + 24) q^{21}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 6 q^{5} - 16 q^{7} + 18 q^{9} - 22 q^{11} - 22 q^{13} - 18 q^{15} - 22 q^{17} - 62 q^{19} + 48 q^{21} + 210 q^{23} + 42 q^{25} - 54 q^{27} + 214 q^{29} + 328 q^{31} + 66 q^{33} - 596 q^{35}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.35235
6.35235
0 −3.00000 0 −8.70470 0 15.4094 0 9.00000 0
1.2 0 −3.00000 0 14.7047 0 −31.4094 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2112.4.a.bd 2
4.b odd 2 1 2112.4.a.bm 2
8.b even 2 1 528.4.a.q 2
8.d odd 2 1 264.4.a.f 2
24.f even 2 1 792.4.a.i 2
24.h odd 2 1 1584.4.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
264.4.a.f 2 8.d odd 2 1
528.4.a.q 2 8.b even 2 1
792.4.a.i 2 24.f even 2 1
1584.4.a.be 2 24.h odd 2 1
2112.4.a.bd 2 1.a even 1 1 trivial
2112.4.a.bm 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2112))\):

\( T_{5}^{2} - 6T_{5} - 128 \) Copy content Toggle raw display
\( T_{7}^{2} + 16T_{7} - 484 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 6T - 128 \) Copy content Toggle raw display
$7$ \( T^{2} + 16T - 484 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 22T - 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 22T - 1112 \) Copy content Toggle raw display
$19$ \( T^{2} + 62T - 272 \) Copy content Toggle raw display
$23$ \( T^{2} - 210T + 7600 \) Copy content Toggle raw display
$29$ \( T^{2} - 214T + 4736 \) Copy content Toggle raw display
$31$ \( T^{2} - 328T + 24704 \) Copy content Toggle raw display
$37$ \( T^{2} - 200T + 9452 \) Copy content Toggle raw display
$41$ \( T^{2} - 114T - 111968 \) Copy content Toggle raw display
$43$ \( T^{2} + 606T + 52216 \) Copy content Toggle raw display
$47$ \( T^{2} - 382T - 23936 \) Copy content Toggle raw display
$53$ \( T^{2} - 2T - 115216 \) Copy content Toggle raw display
$59$ \( T^{2} + 1084 T + 293216 \) Copy content Toggle raw display
$61$ \( T^{2} - 354T - 383096 \) Copy content Toggle raw display
$67$ \( T^{2} - 456T + 43216 \) Copy content Toggle raw display
$71$ \( T^{2} - 34T - 99584 \) Copy content Toggle raw display
$73$ \( T^{2} + 112T - 668164 \) Copy content Toggle raw display
$79$ \( T^{2} + 820T + 113300 \) Copy content Toggle raw display
$83$ \( T^{2} + 1012 T - 665152 \) Copy content Toggle raw display
$89$ \( T^{2} - 1036 T + 248596 \) Copy content Toggle raw display
$97$ \( T^{2} - 1308 T + 392644 \) Copy content Toggle raw display
show more
show less