Properties

Label 2112.4
Level 2112
Weight 4
Dimension 152532
Nonzero newspaces 32
Sturm bound 983040
Trace bound 33

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(983040\)
Trace bound: \(33\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2112))\).

Total New Old
Modular forms 371520 153324 218196
Cusp forms 365760 152532 213228
Eisenstein series 5760 792 4968

Trace form

\( 152532 q - 48 q^{3} - 128 q^{4} - 64 q^{6} - 104 q^{7} - 80 q^{9} - 128 q^{10} - 40 q^{11} - 144 q^{12} + 160 q^{13} + 196 q^{15} - 128 q^{16} + 416 q^{17} - 64 q^{18} - 88 q^{21} + 800 q^{22} + 1936 q^{24}+ \cdots + 784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2112))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2112.4.a \(\chi_{2112}(1, \cdot)\) 2112.4.a.a 1 1
2112.4.a.b 1
2112.4.a.c 1
2112.4.a.d 1
2112.4.a.e 1
2112.4.a.f 1
2112.4.a.g 1
2112.4.a.h 1
2112.4.a.i 1
2112.4.a.j 1
2112.4.a.k 1
2112.4.a.l 1
2112.4.a.m 1
2112.4.a.n 1
2112.4.a.o 1
2112.4.a.p 1
2112.4.a.q 1
2112.4.a.r 1
2112.4.a.s 1
2112.4.a.t 1
2112.4.a.u 1
2112.4.a.v 1
2112.4.a.w 1
2112.4.a.x 1
2112.4.a.y 1
2112.4.a.z 1
2112.4.a.ba 2
2112.4.a.bb 2
2112.4.a.bc 2
2112.4.a.bd 2
2112.4.a.be 2
2112.4.a.bf 2
2112.4.a.bg 2
2112.4.a.bh 2
2112.4.a.bi 2
2112.4.a.bj 2
2112.4.a.bk 2
2112.4.a.bl 2
2112.4.a.bm 2
2112.4.a.bn 2
2112.4.a.bo 3
2112.4.a.bp 3
2112.4.a.bq 3
2112.4.a.br 3
2112.4.a.bs 3
2112.4.a.bt 3
2112.4.a.bu 3
2112.4.a.bv 3
2112.4.a.bw 3
2112.4.a.bx 3
2112.4.a.by 4
2112.4.a.bz 4
2112.4.a.ca 4
2112.4.a.cb 4
2112.4.a.cc 5
2112.4.a.cd 5
2112.4.a.ce 5
2112.4.a.cf 5
2112.4.b \(\chi_{2112}(65, \cdot)\) n/a 284 1
2112.4.d \(\chi_{2112}(1343, \cdot)\) n/a 240 1
2112.4.f \(\chi_{2112}(1057, \cdot)\) n/a 120 1
2112.4.h \(\chi_{2112}(1759, \cdot)\) n/a 144 1
2112.4.k \(\chi_{2112}(287, \cdot)\) n/a 240 1
2112.4.m \(\chi_{2112}(1121, \cdot)\) n/a 288 1
2112.4.o \(\chi_{2112}(703, \cdot)\) n/a 144 1
2112.4.q \(\chi_{2112}(175, \cdot)\) n/a 288 2
2112.4.t \(\chi_{2112}(529, \cdot)\) n/a 240 2
2112.4.u \(\chi_{2112}(815, \cdot)\) n/a 480 2
2112.4.x \(\chi_{2112}(593, \cdot)\) n/a 568 2
2112.4.y \(\chi_{2112}(577, \cdot)\) n/a 576 4
2112.4.bb \(\chi_{2112}(265, \cdot)\) None 0 4
2112.4.bc \(\chi_{2112}(329, \cdot)\) None 0 4
2112.4.bd \(\chi_{2112}(23, \cdot)\) None 0 4
2112.4.be \(\chi_{2112}(439, \cdot)\) None 0 4
2112.4.bi \(\chi_{2112}(127, \cdot)\) n/a 576 4
2112.4.bk \(\chi_{2112}(161, \cdot)\) n/a 1152 4
2112.4.bm \(\chi_{2112}(863, \cdot)\) n/a 1152 4
2112.4.bp \(\chi_{2112}(415, \cdot)\) n/a 576 4
2112.4.br \(\chi_{2112}(97, \cdot)\) n/a 576 4
2112.4.bt \(\chi_{2112}(191, \cdot)\) n/a 1136 4
2112.4.bv \(\chi_{2112}(833, \cdot)\) n/a 1136 4
2112.4.by \(\chi_{2112}(197, \cdot)\) n/a 9184 8
2112.4.bz \(\chi_{2112}(133, \cdot)\) n/a 3840 8
2112.4.ca \(\chi_{2112}(155, \cdot)\) n/a 7680 8
2112.4.cb \(\chi_{2112}(43, \cdot)\) n/a 4608 8
2112.4.ce \(\chi_{2112}(17, \cdot)\) n/a 2272 8
2112.4.ch \(\chi_{2112}(47, \cdot)\) n/a 2272 8
2112.4.ci \(\chi_{2112}(49, \cdot)\) n/a 1152 8
2112.4.cl \(\chi_{2112}(79, \cdot)\) n/a 1152 8
2112.4.co \(\chi_{2112}(7, \cdot)\) None 0 16
2112.4.cp \(\chi_{2112}(71, \cdot)\) None 0 16
2112.4.cq \(\chi_{2112}(41, \cdot)\) None 0 16
2112.4.cr \(\chi_{2112}(25, \cdot)\) None 0 16
2112.4.cu \(\chi_{2112}(19, \cdot)\) n/a 18432 32
2112.4.cv \(\chi_{2112}(59, \cdot)\) n/a 36736 32
2112.4.da \(\chi_{2112}(37, \cdot)\) n/a 18432 32
2112.4.db \(\chi_{2112}(29, \cdot)\) n/a 36736 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2112))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2112)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 28}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(264))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(352))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(528))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(704))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1056))\)\(^{\oplus 2}\)